占用概率栅格地图(Occupancy Grid Map)

1. 机器人地图的分类

1)尺度地图

每一个地点都可以用坐标来表示,比如北京在东经116°23′17'',北纬39°54′27''。

2)拓扑地图

每一个地点用一个点来表示,用边来连接相邻的点,即图论中的图(Graph),比如铁路线图。

3)语义地图

将每一个地点和道路都会用标签的集合来表示。

在机器人领域,尺度地图常用于定位于地图构建(Mapping)、定位(Localization),拓扑地图常用于路径规划(Path Planning),而语义地图常用于人机交互(Human Robot Interaction)。

2. 占据栅格地图

传感器数据有噪音,所以在用激光传感器检测前方障碍物距离机器人多远,不可能检测到一个准确的数值。如果准确值是1.4米,有时会测出1.42米,有时甚至1.35米。另外,传感器数据是本地坐标系的,而机器人要构建的是一个全局的地图。最后,机器人会运动,运动也是有噪音的。为了解决这一问题,我们对噪音问题使用高斯分布进行刻画。

例如,假设我们设定looccu=0.9,lofree=-0.7。那么, 一个点状态的数值越大,就表示越肯定它是Occupied状态,相反数值越小,就表示越肯定它是Free状态。 

上图就展示了用两个激光传感器的数据更新地图的过程。在结果中,一个点颜色越深表示越肯定它是Free的,颜色越浅表示越肯定它是Occupied的。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值