参考如下MSSP的文章:
HERWIG N,BORGHESANI P. Explaining deep neural networks processing raw diagnostic signals[J]. Mechanical Systems and Signal Processing,2023,200:110584.
该文献将SHAP方法应用于凯斯西储大学轴承故障诊断中,并对高维数据问题进行了两处改进。①将时域信号转换到频域或时频域,在特征相对稀疏的频域或时频域计算Shapely值,并且完全可逆的变换保证了信息的完整性;②相比于计算谱图的每条谱线的Shapely值,该方法将谱图进行了划分,例如将频谱图划分为等距频带或自适应频带,将该频带作为计算Shapely值的特征。基于上述两处改进,该方法在高频轴承数据上进行SHAP分析的流程如下:①将时域信号转换为谱域信号,然后将谱域信号进行谱带划分,每个谱带赋予独立编号、并被视为特征属性;
②随机置换谱带、并进行拼接,构成待分析样本集;
③将置换、拼接后的谱域信号再变换为时域信号,输入到神经网络中,计算相应的Shapely值。该方法的好处是可以对谱带进行自适应划分,细化Shapely值的分析粒度。
如下图所示,将时域信号转变为频域信号,计算自适应频带的SHAP,绝对值越大表明该频带的边际贡献越大,正号表明正相关,负号表明负相关。其中,上图为神经网络输入信号,左下图是完整频域及对应SHAP值图,右下图是感兴趣频带及SHAP值图。
学术咨询:
担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。
一维神经网络的特征可视化分析-以心电信号为例(Python,Jupyter Notebook)
包括Occlusion sensitivity方法,Saliency map方法,Grad-CAM方法
基于深度学习的机械故障诊断及其权重可视化(Python)
MATLAB环境下基于CNN的轴承故障诊断及特征可视化
算法程序运行环境为MATLAB R2021B,使用 CNN 进行滚动轴承故障诊断,原始数据来自西储大学轴承数据中心,包含3种故障工况(内圈故障,外圈故障和滚动体故障)和1种正常工况。
医学图像的深度学习可解释性(MATLAB R2021B)
一维时间序列信号的稀疏度度量方法(MATLAB R2018A)
算法运行环境为MATLAB R2018A,执行一维信号的稀疏度量方法,包括峰度(Kurt)、负熵(NE)、d -范数(DN)、2-范数与1-范数之比(L2/L1)、基尼指数(GI)、修正平滑指数(MSI)、基尼指数2 (GI2)、基尼指数3 (GI3)、广义基尼指数(GGI)、完全广义基尼指数等。
算法可迁移至金融时间序列,地震信号,机械振动信号,语音信号,声信号,生理信号(EEG,EMG)等一维时间序列信号。
基于脉冲小波的旋转机械故障诊断(MATLAB R2018a)