神组合:频域+时间序列!选题超新颖,轻松拿下NeurIPS!

今天被NeurIPS24上的一篇文章秀到了!作者将频率滤波器直接用于时序,预测误差比一直以性能好而著称的PatchTST,还低52.23%!

此外,在ICLR、KDD等顶会也有不少频域+时间序列的成果!比如预测准确率近乎100%的FITS;参数量和计算成本都狂降的Fredformer……

其热度可见一斑!主要在于,目前时序预测方法大多基于Transformer,但因高频信号响应方面不灵敏,面临信息捕捉不全、计算效率低等问题。而这些则是频域方法的优势。其通过将时序数据从时域转换到频域,可以更容易地捕捉到数据的周期性和趋势性,从而强化模型预测未来的能力。

值得一提的是,该思路目前还不算卷,创新机会很多。为让大家能紧跟领域前沿,找到更多灵感启发,我给大家准备了12种创新思路和源码。

论文原文+开源代码需要的同学看文末

论文:FilterNet: Harnessing Frequency Filters for Time Series Forecasting
内容

该论文介绍了一种新型时间序列预测模型FilterNet,该模型通过引入可学习的频率滤波器来提取时间序列信号中的关键信息模式。FilterNet包含两种滤波器:普通塑形滤波器和上下文塑形滤波器,它们能够选择性地传递或减弱某些信号成分,有效处理高频噪声并利用全频谱信息。

图片

论文:FITS: Modeling Time Series with 10⁢k Parameters
内容

该论文介绍了FITS,这是一个轻量级但功能强大的时间序列分析模型,它通过在复频域中进行插值来处理时间序列数据,以不到10k的参数量实现了与主流模型相媲美的性能,特别适合于边缘设备,为时间序列预测和异常检测任务提供了一种高效的解决方案。

图片

论文:Fredformer: Frequency Debiased Transformer for Time Series Forecasting
内容

该论文介绍的Fredformer是一种新型的时间序列预测模型,它通过在复频域中进行插值来处理时间序列数据,以减轻模型对低频特征的偏好,并提高对高频特征的捕捉能力。该模型基于Transformer架构,通过学习不同频段的特征来增强预测准确性,并且在保持极少参数量(约10k)的同时,实现了与主流模型相媲美的性能,特别适合边缘设备上的应用。

图片

论文:Frequency-domain MLPs are More Effective Learners in Time Series Forecasting
内容

该论文提出了一种新的基于频域多层感知器(MLP)的时间序列预测方法,它基于频域中的多层感知器(MLP)来提高预测效果,FreTS通过将时域信号转换到频域,这种方法利用频域中MLP的优势,包括全局视角和能量压缩,以提高预测性能,通过在频域中操作来学习时间序列数据的复杂模式。

图片

关注下方《AI科研圈圈》

回复“11FTS”获取全部论文+开源代码

码字不易,欢迎大家点赞评论收藏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值