迭代最近点 ICP 详细推导(C++实现)

一、简介

        迭代最近点算法(Iterated Closest Points, ICP),顾名思义,就是采用迭代优化的思想以空间距离作为匹配点的选择依据,通过不断调整点云的位姿使得匹配点之间距离累计最小。假设有两组点云,其中一个目标点云A另一个为参考点云B,ICP算法的目的是为了算出一个最优的旋转矩阵R和平移向量t使得变换后的点云A能与B达到最精确的匹配。ICP算法因为其思想简单,精度高等特点成为了局部配准的主流算法。

        ICP需要反复执行以下两步直至收敛:第一步,计算A点集与B点集之间的匹配点对;第二步,根据前一步得到的匹配点对计算出A点集与B点集之间的转换矩阵,并对A点集进行相应的转换。在取得了点集A与B的匹配点基础上,点集之间的转换矩阵求解也分为两种方式:利用线性代数的求解(主要是SVD),以及利用非线性优化方式的求解(类似于Bundle Adjustment)。其中奇异值分解法(SVD)因为准确、稳定以及高效等特点被广泛运用,本文主要介绍利用SVD进行转换矩阵的求解。

最近点对查找:对应点的计算是整个配准过程中耗费时间最长的步骤,查找最近点,利用 kd tree提高查找速度。kd tree 法建立点的拓扑关系是基于二叉树的坐标轴分割,构造 kd tree 的过程就是按照二叉树法则生成。首先按 X 轴寻找分割线,即计算所有点的x值的平均值,以最接近这个平均值的点的x值将空间分成两部分,然后在分成的子空间中按 Y 轴寻找分割线,将其各分成两部分,分割好的子空间在按X轴分割……依此类推,最后直到分割的区域内只有一个点。这样的分割过程就对应于一个二叉树,二叉树的分节点就对应一条分割线,而二叉树的每个叶子节点就对应一个点,这样点的拓扑关系就建立了。

ICP方法的配准步骤如下:假设给两个三维点集 X1 和 X2,

第一步,计算X2中的每一个点在X1 点集中的对应近点;

第二步,求得使上述对应点对平均距离最小的刚体变换,求得平移参数和旋转参数;

第三步,对X2使用上一步求得的平移和旋转参数,得到新的变换点集;

第四步, 如果新的变换点集与参考点集满足两点集的平均距离小于某一给定阈值,则停止迭代计算,否则新的变换点集作为新的X2继续迭代,直到达到目标函数的要求。


二、详细推导

问题描述:

假设存在两个点云集合\{p\}\{p^{'}\},求:一个欧式变换 R, t 使得

 求解问题:

假设误差项为:

e_{i}=p_{i}-(Rp_{i}^{'}+t)

那么问题转化为优化问题:

\min_{R,t}J=\frac{1}{2}\sum_{i=1}^{n}\left \| (p_{i}-(Rp_{i}{'}+t)) \right \|^{2}

定义质心为:

p=\frac{1}{n}\sum_{i=1}^{n}(p_{i}),p^{'}=\frac{1}{n}\sum_{i=1}^{n}(p_{i}^{'})

那么有:

\frac{1}{2}\sum_{i=1}^{n}\left\| p_{i}-(Rp_{i}{'}+t) \right \|^{2} \\=\frac{1}{2}\sum_{i=1}^{n}\left \|p_{i}-Rp_{i}^{'}-t-p+Rp^{'}+p-Rp^{'}\right \|^{2} \\=\frac{1}{2}\sum_{i=1}^{n}\left(\left \|p_{i}-p-R(p_{i}^{'}-p^{'})\right \|^{2}+\left \| p-Rp^{'}-t \right \|^{2}+2(p_{i}-p-R(p_{i}^{'}-p^{'}))^{T}(p-Rp^{'}-t)\right)

因为

所以问题转化为:

\min_{R,t}J=\frac{1}{2}\sum_{i=1}^{n}\left (\left \|p_{i}-p-R(p_{i}^{'}-p^{'})\right \|^{2}+\left \| p-Rp^{'}-t \right \|^{2} \right )

左右两项都大于零,左边只和旋转矩阵R相关,而右边既有R也有t,但只和质心相关。可以先求出R,再令第二项为零就能得到t。

  • 1、计算两组质心位置p,p^{'},然后计算每个点的去质心坐标:
    q_{i}=p_{i}-p,q_{i}^{'}=p_{i}^{'}-p^{'}
  • 2、根据以下优化问题计算旋转矩阵:
    R^{*}=\arg \min_{R}\frac{1}{2}\sum_{i=1}^{n} \left \| q_{i}-Rq_{i}^{'} \right \|^{2}
  • 3、根据第2步的R计算t:
    t^{*}=p-Rp^{'}

展开关于R的误差项有:

<think>嗯,用户想了解迭代最近点算法ICP)的实现和原理。首先,我需要回顾一下ICP的基本概念。根据引用[3],ICP主要用于点云配准,通过迭代优化旋转和平移矩阵,使两个点云对齐。核心步骤包括最近点搜索、计算变换矩阵,然后不断迭代直到收敛。 那原理部分,用户可能需要知道ICP的数学基础。引用[3]提到ICP基于最小二乘法,通过SVD分解求解最优变换。引用[4]和[5]也提到SVD的应用,这里需要详细解释一下。比如,如何构建协方差矩阵,然后进行SVD分解得到旋转矩阵R和平移向量t。 接下来是实现步骤。根据引用[3],步骤大致分为初始化、最近点匹配、计算变换、应用变换并检查收敛。可能需要用代码示例来说明,比如Python或C++。不过用户提供的引用中有Matlab代码的示例(引用[2]),但用户可能更希望看到Python实现,因为之前的示例用了Python。 关于优缺点,引用[1]和[3]提到ICP对初始位置敏感,容易陷入局部最优,计算量大。这些都需要在回答中说明,帮助用户全面了解。 用户的问题还涉及生成相关问题,我需要根据内容提出相关问题,比如应用场景、优化方法、与SVD的关系等。需要确保问题覆盖原理、实现和扩展。 另外,注意格式要求,数学公式要用$...$或$$...$$。比如,变换矩阵的推导,目标函数的最小化,SVD分解的步骤等都需要用LaTeX正确表达。 可能需要检查每个引用的内容,确保引用标识正确。比如引用[3]详细解释了ICP的步骤,引用[4]和[5]涉及SVD的推导,引用[1]提到ICP的应用领域。 最后,确保回答结构清晰,分原理、实现步骤、代码示例、优缺点和应用场景几个部分。代码部分可能需要简化,但关键步骤如最近邻搜索、SVD分解和变换应用要体现出来。</think>### 迭代最近点算法ICP)原理与实现 #### 一、ICP算法原理 迭代最近点算法ICP)用于求解两个点云之间的**最优刚体变换**(旋转矩阵$R$和平移向量$t$),通过最小化对应点之间的欧氏距离实现配准[^3]。其核心步骤如下: 1. **最近点匹配**:从目标点云$Q$中为源点云$P$中的每个点寻找最近邻点,形成对应点对。 2. **变换矩阵计算**:基于对应点对,通过奇异值分解(SVD)求解最优刚体变换$R$和$t$。 3. **迭代更新**:将变换应用于源点云$P$,重复上述步骤直至收敛(如误差变化小于阈值$\epsilon$)。 数学上,ICP的目标是最小化误差函数: $$E(R, t) = \sum_{i=1}^N \| (R \cdot p_i + t) - q_i \|^2$$ 其中$p_i \in P$,$q_i \in Q$为对应点对。通过SVD分解协方差矩阵$H = \sum (p_i - \mu_P)(q_i - \mu_Q)^T$,可解得$R = UV^T$($U$和$V$为$H$的SVD分解结果)[^4][^5]。 #### 二、ICP算法实现步骤 1. **初始化**:设定最大迭代次数$k_{\text{max}}$和误差阈值$\epsilon$。 2. **最近邻搜索**:使用KD-Tree加速对应点匹配。 3. **计算变换矩阵**: - 计算质心$\mu_P = \frac{1}{N}\sum p_i$,$\mu_Q = \frac{1}{N}\sum q_i$。 - 构建协方差矩阵$H = \sum (p_i - \mu_P)(q_i - \mu_Q)^T$。 - 对$H$进行SVD分解:$H = U \Sigma V^T$。 - 计算$R = UV^T$,$t = \mu_Q - R \cdot \mu_P$。 4. **应用变换并检查收敛**:计算误差变化量$\Delta E$,若$\Delta E < \epsilon$则终止迭代。 #### 三、代码示例(Python简化版) ```python import numpy as np from sklearn.neighbors import NearestNeighbors def icp(source, target, max_iter=50, tol=1e-5): R = np.eye(3) # 初始旋转矩阵 t = np.zeros(3) # 初始平移向量 prev_error = 0 for _ in range(max_iter): # 最近邻搜索 neigh = NearestNeighbors(n_neighbors=1).fit(target) _, indices = neigh.kneighbors(source) matched_target = target[indices.flatten()] # 计算质心 mu_p = np.mean(source, axis=0) mu_q = np.mean(matched_target, axis=0) # 构建协方差矩阵H H = (source - mu_p).T @ (matched_target - mu_q) # SVD分解求R和t U, _, Vt = np.linalg.svd(H) R_ = U @ Vt if np.linalg.det(R_) < 0: # 处理反射情况 Vt[-1, :] *= -1 R_ = U @ Vt t_ = mu_q - R_ @ mu_p # 更新变换 source = (R_ @ source.T).T + t_ R = R_ @ R t = R_ @ t + t_ # 计算误差 error = np.mean(np.linalg.norm(source - matched_target, axis=1)) if abs(prev_error - error) < tol: break prev_error = error return R, t, source ``` #### 四、ICP算法的优缺点 | **优点** | **缺点** | |-----------------------------------|-----------------------------------| | 1. 实现简单,收敛速度快 | 1. 对初始位置敏感,需粗略初始配准 | | 2. 适用于刚体变换场景 | 2. 容易陷入局部最优 | | 3. 在点云密度较高时精度较好 | 3. 计算量大(需优化最近邻搜索) | #### 五、应用场景 - **三维重建**:多视角点云拼接[^1] - **机器人定位**:LiDAR点云与地图匹配 - **相位恢复**:光学测量中的相位解包裹[^2] ---
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值