AI科研灵感致力于成为您在人工智能领域的领航者,定期更新人工智能领域的重大新闻与最新动态,和您一起探索AI的无限可能。立即关注我们,开启您的AI学习之旅!
2025深度学习发论文&模型涨点之——小样本CLIP
小样本CLIP是指在少量样本的情况下,利用CLIP模型进行分类或其他任务。CLIP通过对比学习将图像和文本映射到一个共同的特征空间,能够有效处理小样本学习任务。
- CLIP的零样本分类能力使其能够在训练过程中不需要任何标记示例的情况下对新类别进行分类。它通过为文本描述生成嵌入,并计算输入图像嵌入与文本嵌入之间的余弦相似度来完成分类。
- 研究人员提出了一种语义感知微调方法,通过利用先验知识对CLIP模型进行微调,提高其在少样本学习任务中的性能。该方法通过生成具有语义关联的条件图像块来增强模型对输入图像的特征表示。
小编整理了一些小样本CLIP【论文】合集,以下放出部分,全部论文PDF版皆可领取。
需要的同学
回复“111”即可全部领取
论文精选
论文1:
AMU-Tuning: Effective Logit Bias for CLIP-based Few-shot Learning
AMU-Tuning:基于CLIP的少样本学习中的有效逻辑偏差调整
方法
-
统一公式分析:首次从逻辑偏差的角度对C