频域+特征融合这么做,竟能发Nature?!

2025深度学习发论文&模型涨点之——频域+特征融合

  • 滤波:通过在频域中设计滤波器,可以去除信号中的噪声或保留特定频率范围内的信号成分。例如,在图像处理中,低通滤波器可以去除高频噪声,平滑图像;高通滤波器可以增强图像的边缘信息。

  • 特征提取:频域中的某些特征可以更好地描述信号的特性。例如,语音信号的频谱特征(如梅尔频率倒谱系数MFCC)可以用于语音识别,因为它们能够很好地反映语音的音色和语调等信息。

  • 信号分析:频域分析可以帮助我们理解信号的频率结构,从而更好地分析信号的性质和行为。例如,在生物医学信号分析中,通过分析心电图(ECG)信号的频谱,可以诊断心脏疾病。

小编整理了一些频域+特征融合论文】合集,以下放出部分,全部论文PDF版皆可领取。

需要的同学

回复“ 频域+特征融合”即可全部领取

论文精选

论文1:

RTFS-Net Recurrent Time-Frequency Modelling for Efficient Audio-Visual Speech Separation

RTFS-Net:用于高效音视频语音分离的循环时频建模

方法

    • 时间-频率域音频处理:提出了一种基于时间-频率域的音频处理方法,通过短时傅里叶变换(STFT)将音频信号转换为复数时间-频率二元组,并在此基础上进行算法处理。

      多层循环神经网络(RNN):使用多层RNN分别对时间维度和频率维度的音频特征进行独立建模,以捕获音频的时间和频率信息。

      注意力融合技术:引入了一种基于注意力机制的音频和视觉信息融合技术,通过多头注意力机制高效地整合音频和视觉特征。

      图片

    创新点

        • 时间-频率独立建模:通过将音频的时间和频率维度分别建模,显著提高了语音分离的性能,同时减少了模型的参数数量和计算复杂度。

          注意力融合技术:通过多头注意力机制,能够更有效地整合音频和视觉信息,提高了模型对目标说话人的识别能力。

          掩码分离方法:利用复数乘法进行掩码分离,避免了传统掩码方法中幅度和相位信息的丢失,从而提高了分离语音的清晰度。

        图片

        论文2:

        Spatial-frequency Dual-Domain Feature Fusion Network for Low-Light Remote Sensing Image Enhancement

        空间-频率双域特征融合网络用于低光照遥感图像增强

        方法

            • 空间-频率双域融合:提出了一种双域特征融合网络(DFFN),将低光照图像增强任务分为两个阶段:幅度照明阶段和相位细化阶段,分别学习幅度信息以恢复图像亮度和相位信息以细化细节。

              信息融合仿射模块(IFAM):设计了一个信息融合仿射模块,用于整合不同阶段和尺度的特征信息,通过动态融合和仿射滤波实现自适应学习。

              双域幅度块(DDAB)和双域相位块(DDPB):分别为幅度照明阶段和相位细化阶段设计了双域块,用于整合空间域和频率域的特征信息。

              图片

            创新点

                  • 双域融合:通过空间域和频率域的特征融合,有效解决了低光照图像增强中的亮度恢复和细节细化问题。

                    信息融合模块:通过IFAM模块,实现了不同阶段和尺度特征的动态融合,增强了模型对全局上下文的表示能力。

                    傅里叶变换的应用:利用傅里叶变换的全局信息提取能力,避免了传统CNN在处理高分辨率图像时的局限性。

                    图片


                  论文3:

                  STeInFormer Spatial-Temporal Interaction Transformer Architecture for Remote Sensing Change Detection

                  STeInFormer:用于遥感变化检测的空间-时间交互Transformer架构

                  方法

                  • 空间-时间交互Transformer:提出了一种新的空间-时间交互Transformer架构(STeInFormer),用于多时相特征提取,首次将空间和时间维度的交互融入特征提取过程中。

                    交叉时间交互器(CTI):通过门控机制强调感兴趣的变化,同时抑制非感兴趣的变化,提高了特征提取的针对性。

                    交叉空间交互器(CSI):基于U型架构,整合语义信息和空间细节,提高了特征表示的鲁棒性。

                    图片

                  创新点

                        • 空间-时间交互:通过CTI和CSI模块,实现了空间和时间维度的交互,提高了特征提取的鲁棒性和区分能力。

                          多频率混合器:首次从频率域角度解决遥感变化检测问题,通过多频率混合器整合频率域特征,提高了模型的表达能力。

                          图片


                        论文4:

                        Temporal Lift Pooling for Continuous Sign Language Recognition

                        连续手语识别中的时间提升池化

                        方法

                          • 时间提升池化(TLP):从信号处理中的提升方案(Lifting Scheme)推导出TLP,用于智能地对不同时间层次的特征进行下采样。

                            三阶段流程:TLP包括信号分解、组件加权和信息融合三个阶段,逐步分解输入信号并重新加权其组件以生成统一的输出。

                            提升过程:通过预测和更新函数将输入信号分解为低频和高频子带,分别对应主要运动模式和详细动态。

                            图片

                          创新点

                              • 时间特征提取:TLP能够有效地从时间序列中提取主要运动模式和详细动态,提高了特征的判别能力。

                                动态加权:通过动态加权模块,能够根据输入信号的特性自适应地调整不同频率组件的权重,增强了模型的适应性。

                                计算效率:TLP作为一种即插即用的工具,仅增加了0.4%的计算成本,具有较高的计算效率。

                              图片

                              小编整理了频域+特征融合文代码合集

                              需要的同学扫码添加我

                              回复“ 频域+特征融合”即可全部领取

                              评论
                              添加红包

                              请填写红包祝福语或标题

                              红包个数最小为10个

                              红包金额最低5元

                              当前余额3.43前往充值 >
                              需支付:10.00
                              成就一亿技术人!
                              领取后你会自动成为博主和红包主的粉丝 规则
                              hope_wisdom
                              发出的红包
                              实付
                              使用余额支付
                              点击重新获取
                              扫码支付
                              钱包余额 0

                              抵扣说明:

                              1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
                              2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

                              余额充值