2025深度学习发论文&模型涨点之——频域+特征融合
-
滤波:通过在频域中设计滤波器,可以去除信号中的噪声或保留特定频率范围内的信号成分。例如,在图像处理中,低通滤波器可以去除高频噪声,平滑图像;高通滤波器可以增强图像的边缘信息。
-
特征提取:频域中的某些特征可以更好地描述信号的特性。例如,语音信号的频谱特征(如梅尔频率倒谱系数MFCC)可以用于语音识别,因为它们能够很好地反映语音的音色和语调等信息。
-
信号分析:频域分析可以帮助我们理解信号的频率结构,从而更好地分析信号的性质和行为。例如,在生物医学信号分析中,通过分析心电图(ECG)信号的频谱,可以诊断心脏疾病。
小编整理了一些频域+特征融合【论文】合集,以下放出部分,全部论文PDF版皆可领取。
需要的同学
回复“ 频域+特征融合”即可全部领取
论文精选
论文1:
RTFS-Net Recurrent Time-Frequency Modelling for Efficient Audio-Visual Speech Separation
RTFS-Net:用于高效音视频语音分离的循环时频建模
方法
-
时间-频率域音频处理:提出了一种基于时间-频率域的音频处理方法,通过短时傅里叶变换(STFT)将音频信号转换为复数时间-频率二元组,并在此基础上进行算法处理。
多层循环神经网络(RNN):使用多层RNN分别对时间维度和频率维度的音频特征进行独立建模,以捕获音频的时间和频率信息。
注意力融合技术:引入了一种基于注意力机制的音频和视觉信息融合技术,通过多头注意力机制高效地整合音频和视觉特征。
创新点
-
时间-频率独立建模:通过将音频的时间和频率维度分别建模,显著提高了语音分离的性能,同时减少了模型的参数数量和计算复杂度。
注意力融合技术:通过多头注意力机制,能够更有效地整合音频和视觉信息,提高了模型对目标说话人的识别能力。
掩码分离方法:利用复数乘法进行掩码分离,避免了传统掩码方法中幅度和相位信息的丢失,从而提高了分离语音的清晰度。
论文2:
Spatial-frequency Dual-Domain Feature Fusion Network for Low-Light Remote Sensing Image Enhancement
空间-频率双域特征融合网络用于低光照遥感图像增强
方法
-
空间-频率双域融合:提出了一种双域特征融合网络(DFFN),将低光照图像增强任务分为两个阶段:幅度照明阶段和相位细化阶段,分别学习幅度信息以恢复图像亮度和相位信息以细化细节。
信息融合仿射模块(IFAM):设计了一个信息融合仿射模块,用于整合不同阶段和尺度的特征信息,通过动态融合和仿射滤波实现自适应学习。
双域幅度块(DDAB)和双域相位块(DDPB):分别为幅度照明阶段和相位细化阶段设计了双域块,用于整合空间域和频率域的特征信息。
创新点
-
双域融合:通过空间域和频率域的特征融合,有效解决了低光照图像增强中的亮度恢复和细节细化问题。
信息融合模块:通过IFAM模块,实现了不同阶段和尺度特征的动态融合,增强了模型对全局上下文的表示能力。
傅里叶变换的应用:利用傅里叶变换的全局信息提取能力,避免了传统CNN在处理高分辨率图像时的局限性。
论文3:
STeInFormer Spatial-Temporal Interaction Transformer Architecture for Remote Sensing Change Detection
STeInFormer:用于遥感变化检测的空间-时间交互Transformer架构
方法
-
空间-时间交互Transformer:提出了一种新的空间-时间交互Transformer架构(STeInFormer),用于多时相特征提取,首次将空间和时间维度的交互融入特征提取过程中。
交叉时间交互器(CTI):通过门控机制强调感兴趣的变化,同时抑制非感兴趣的变化,提高了特征提取的针对性。
交叉空间交互器(CSI):基于U型架构,整合语义信息和空间细节,提高了特征表示的鲁棒性。
创新点
-
空间-时间交互:通过CTI和CSI模块,实现了空间和时间维度的交互,提高了特征提取的鲁棒性和区分能力。
多频率混合器:首次从频率域角度解决遥感变化检测问题,通过多频率混合器整合频率域特征,提高了模型的表达能力。
论文4:
Temporal Lift Pooling for Continuous Sign Language Recognition
连续手语识别中的时间提升池化
方法
-
时间提升池化(TLP):从信号处理中的提升方案(Lifting Scheme)推导出TLP,用于智能地对不同时间层次的特征进行下采样。
三阶段流程:TLP包括信号分解、组件加权和信息融合三个阶段,逐步分解输入信号并重新加权其组件以生成统一的输出。
提升过程:通过预测和更新函数将输入信号分解为低频和高频子带,分别对应主要运动模式和详细动态。
创新点
-
时间特征提取:TLP能够有效地从时间序列中提取主要运动模式和详细动态,提高了特征的判别能力。
动态加权:通过动态加权模块,能够根据输入信号的特性自适应地调整不同频率组件的权重,增强了模型的适应性。
计算效率:TLP作为一种即插即用的工具,仅增加了0.4%的计算成本,具有较高的计算效率。
小编整理了频域+特征融合论文代码合集
需要的同学扫码添加我
回复“ 频域+特征融合”即可全部领取