自动驾驶之ST图与迭代优化
上一讲:b站老王 自动驾驶决策规划学习记录(十)
接着上一讲学习记录b站老王对自动驾驶规划系列的讲解
回顾:
参考线->建立frenet坐标轴,障碍物投影,动态规划(决策),二次规划,frenet转cartesian
1 ST图、预测
已有cartesian的path,作速度规划
ST图的画法
2 SL、ST如何迭代求解
当前帧规划端
当前帧的规划结果是下一帧的上一次的规划结果
EM planner核心思想
1.将SLT三维规划问题降维,分解成两个二维的SL、ST规划问题
大大降低了规划难度。
2.上一帧的trajectory优化当前帧的SL、SL优化ST,不断迭代
扩展:
1、博弈问题
预测很难处理博弈问题
整个决策算法中最难的问题,行业内难题