b站老王 自动驾驶决策规划学习记录(十一)

本文介绍了自动驾驶中的ST图在路径规划中的应用,包括从Frenet坐标轴到cartesian路径的速度规划,以及SL和ST的迭代求解过程。重点讲解了EMplanner的核心思想,即通过降维和迭代优化来解决博弈问题,降低决策规划难度。
摘要由CSDN通过智能技术生成

自动驾驶之ST图与迭代优化

上一讲:b站老王 自动驾驶决策规划学习记录(十)
接着上一讲学习记录b站老王对自动驾驶规划系列的讲解

参考视频:自动驾驶决策规划算法二章第六节 ST图与迭代优化

回顾:
参考线->建立frenet坐标轴,障碍物投影,动态规划(决策),二次规划,frenet转cartesian

1 ST图、预测

已有cartesian的path,作速度规划
在这里插入图片描述

ST图的画法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2 SL、ST如何迭代求解

在这里插入图片描述
当前帧规划端
在这里插入图片描述
在这里插入图片描述
当前帧的规划结果是下一帧的上一次的规划结果
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

EM planner核心思想
1.将SLT三维规划问题降维,分解成两个二维的SL、ST规划问题大大降低了规划难度。
2.上一帧的trajectory优化当前帧的SL、SL优化ST,不断迭代
扩展:
1、博弈问题
在这里插入图片描述
预测很难处理博弈问题
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
整个决策算法中最难的问题,行业内难题

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值