【车体坐标系与世界坐标系的互相转换】能够一眼看懂的知识点!!!

本文详细阐述了如何在自动驾驶或机器人技术中,通过数学方法实现车体坐标系与世界坐标系之间的转换,包括两个方向的转换公式及其背后的旋转矩阵表示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文讲解车体坐标系与世界坐标系互相转换的数学推导,如下图所示
在这里插入图片描述
将waypoint坐标从车体坐标系转换到世界坐标系:

[ x ′ y ′ z ′ ] = [ x y z ] [ cos ⁡ θ sin ⁡ θ 0 − sin ⁡ θ cos ⁡ θ 0 0 0 1 ] \left[\begin{array}{lll} x^{\prime} & y^{\prime} & z^{\prime} \end{array}\right]=\left[\begin{array}{lll} x & y & z \end{array}\right]\left[\begin{array}{ccc} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array}\right] [xyz]=[xyz] cosθsinθ0sinθcosθ0001

将waypoint坐标从世界坐标系转换到车体坐标系:
[ x y z ] = [ x ′ y ′ z ′ ] [ cos ⁡ θ − sin ⁡ θ 0 sin ⁡ θ cos ⁡ θ 0 0 0 1 ] \left[\begin{array}{lll} x & y & z \end{array}\right]=\left[\begin{array}{lll} x^{\prime} & y^{\prime} & z^{\prime} \end{array}\right]\left[\begin{array}{ccc} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array}\right] [xyz]=[xyz] cosθsinθ0sinθcosθ0001


### 大地坐标系车身坐标系之间的关系 在汽车工程领域,大地坐标系通常指的是惯性坐标系世界坐标系,而车身坐标系则是安装于车辆上的局部坐标系。两者之间存在固定的空间变换关系。 #### 定义特性 - **大地坐标系(Inertial Coordinate System)** - 原点位于地球表面某一点。 - 方向定义遵循地理方位:X轴指向东,Y轴指向北,Z轴垂直向上。 - **车身坐标系(Vehicle Body Frame)** - 原点设于车体中心位置。 - X轴沿车辆前进方向,Y轴平行于地面并朝左,Z轴竖直向上[^1]。 ### 转换方法 为了实现从大地坐标系到车身坐标系转换,需考虑平移和旋两种操作: #### 平移矩阵 T 假设已知车辆当前位置(x_0,y_0,z_0),则可构建如下形式的平移矩阵T用于描述两坐标系统的位移差异: \[ T=\begin{bmatrix} 1 & 0 & 0 & x_{0}\\ 0 & 1 & 0 & y_{0} \\ 0 & 0 & 1 & z_{0} \\ 0 & 0 & 0 & 1\\ \end{bmatrix} \] #### 旋矩阵 R 考虑到车辆姿态变化涉及三个自由度——航向角ψ(yaw angle)、俯仰角θ(pitch angle)以及横滚角φ(roll angle),因此需要通过欧拉角表示法构造相应的旋矩阵R: ```matlab function R = rotationMatrix(phi, theta, psi) % phi: roll angle around Z axis of vehicle frame % theta: pitch angle around Y' axis after rolling % psi: yaw angle around final X'' axis Rx = [1 0 0; 0 cos(phi) -sin(phi); 0 sin(phi) cos(phi)]; Ry = [cos(theta) 0 sin(theta); 0 1 0; -sin(theta) 0 cos(theta)]; Rz = [cos(psi) -sin(psi) 0; sin(psi) cos(psi) 0; 0 0 1]; R = Rz * Ry * Rx; % Combine rotations about all axes. ``` 最终得到的整体转换方程可以写作\[P_v=R(P_i-x_0)\]+x_0的形式,其中\(P_i\)代表大地坐标系下的任意点的位置矢量,\(P_v\)为对应的车身坐标系中的表达。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值