捷联惯导系统模型及仿真(二)

1.2 姿态误差模型

姿态误差模型,是研究的重点。
一种新的对准方法,的新意就主要集中于姿态误差模型的不同。
例如:
从源头上就分成了,惯性系下地理坐标系下的对准;(本文先分析后者)
然后,地理坐标系下的姿态误差模型本身,即不做简化,应为非线性模型,
因此,此处为处理非线性模型,分成了三种:
直接使用非线性模型对非线性模型做近似线性处理使用姿态态误差为小角度时的线性模型(即,做了个姿态误差为小角度的假设)


接下来要介绍的就是,地理坐标系下、基于姿态误差角为小角度假设的,姿态误差模型:

秦书P314

目标:导出 ϕ˙ ϕ ˙ 的方程(即 Cnn C n n ′ δQ δ Q
先已知: 四元数表示形式下的理想情况下姿态更新方程

Q˙=12Qωbnb Q ˙ = 1 2 Q ⊗ ω n b b

考虑误差的实际情况下:
Q^˙=12Q^ω^bnb Q ^ ˙ = 1 2 Q ^ ⊗ ω ^ n b b

  • Q^ Q ^ 与姿态矩阵 Cnb C b n ′ 对应
  • Q^=δQQ Q ^ = δ Q ∗ ⊗ Q Cnb=CnnCnb C b n ′ = C n n ′ C b n 对应

Q^=δQQ Q ^ = δ Q ∗ ⊗ Q

δQ δ Q Q^ Q ^ 引起的误差四元数:

δQ=QQ^ δ Q = Q ⊗ Q ^ ∗

对两边求导,结果即为目标所求
δQ˙=Q˙Q^+QQ^<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值