1.2 姿态误差模型
姿态误差模型,是研究的重点。
一种新的对准方法,的新意就主要集中于姿态误差模型的不同。
例如:
从源头上就分成了,惯性系下 和 地理坐标系下的对准;(本文先分析后者)
然后,地理坐标系下的姿态误差模型本身,即不做简化,应为非线性模型,
因此,此处为处理非线性模型,分成了三种:
直接使用非线性模型、对非线性模型做近似线性处理 和 使用姿态态误差为小角度时的线性模型(即,做了个姿态误差为小角度的假设)
接下来要介绍的就是,地理坐标系下、基于姿态误差角为小角度假设的,姿态误差模型:
秦书P314
目标:导出 ϕ˙ ϕ ˙ 的方程(即 Cn′n C n n ′ 和 δQ δ Q )
先已知: 四元数表示形式下的理想情况下姿态更新方程
Q˙=12Q⊗ωbnb Q ˙ = 1 2 Q ⊗ ω n b b
考虑误差的实际情况下:
Q^˙=12Q^⊗ω^bnb Q ^ ˙ = 1 2 Q ^ ⊗ ω ^ n b b
- Q^ Q ^ 与姿态矩阵 Cn′b C b n ′ 对应
- Q^=δQ∗⊗Q Q ^ = δ Q ∗ ⊗ Q 与 Cn′b=Cn′nCnb C b n ′ = C n n ′ C b n 对应
Q^=δQ∗⊗Q Q ^ = δ Q ∗ ⊗ Q
δQ δ Q 为 Q^ Q ^ 引起的误差四元数:
δQ=Q⊗Q^∗ δ Q = Q ⊗ Q ^ ∗
对两边求导,结果即为目标所求:
δQ˙=Q˙⊗Q^∗+Q⊗Q^<