贝叶斯公式与最小二乘

【定义】
随机变量: X , r \Chi,r X,r(均为矢量)
概率密度函数: p ( X ) p(\Chi) p(X)表示随机变量 X \Chi X的PDF,它表征了 X \Chi X在所有状态上的可能性(likelihood);
条件概率密度函数: p ( r ∣ X ) p(r|\Chi) p(rX)表示给定 X \Chi X下随机变量 r r r的PDF。


【实例化】
随机变量 X \Chi X表示系统的状态(含系统噪声),随机变量 r r r表示量测(含量测噪声)。
已知在系统某个给定状态 X \Chi X下获得了 n n n次观测 r = [ r 1 , r 2 , ⋯   , r n ] T r=[r_1,r_2,\cdots,r_n]^T r=[r1,r2,,rn]T,目标是使用观测推测出系统状态的最优估计。(即融合先验和观测信息,并求解最有估计)

几个明确:
1.假设给定状态的先验概率 p ( X ) p(\Chi) p(X)
2.假设 n n n次观测之间相互独立,即 p ( r ∣ X ) = Π i = 1 n p ( r i ∣ X ) p(r|\Chi)=\Pi_{i=1}^np(r_i|\Chi) p(rX)=Πi=1np(riX)
3.目标求解系统状态的最优估计

根据Bayes公式,得后验概率密度函数:
p ( X ∣ r ) = p ( r ∣ X ) p ( X ) p ( r ) p(\Chi|r)=\frac{p(r|\Chi)p(\Chi)}{p(r)} p(Xr)=p(r)p(rX)p(X)

取系统状态的最优估计为后验概率密度函数的最大值!即
(1) X M A P = a r g max ⁡ X p ( X ∣ r ) = a r g max ⁡ X p ( r ∣ X ) p ( X ) = a r g min ⁡ X [ − Σ i = 1 n log ⁡ p ( r i ∣ X ) − log ⁡ p ( X ) ] \begin{aligned} \Chi_{MAP} &=arg \max_{\Chi} p(\Chi|r) \\ &= arg \max_{\Chi} p(r|\Chi)p(\Chi) \\ &= arg \min_{\Chi} [-\Sigma_{i=1}^n \log p(r_i|\Chi)-\log p(\Chi)] \\ \end{aligned} \tag{1} XMAP=argXmaxp(Xr)=argXmaxp(rX)p(X)=argXmin[Σi=1nlogp(riX)logp(X)](1)

此时,再做一个假设:所涉及PDF均为高斯PDF,即:
p ( r i ∣ X ) = N ( μ r i , Σ r i ) = 1 ( 2 π ) dim ⁡ r i det ⁡ ( Σ r i ) e x p [ − 1 2 ( r i − μ r i ) T Σ r i − 1 ( r i − μ r i ) ] p(r_i|\Chi)=\mathcal{N}(\mu_{r_i},\Sigma_{r_i})=\frac{1}{\sqrt{(2\pi)^{\dim r_i } \det(\Sigma_{r_i})}}exp[-\frac{1}{2} {(r_i-\mu_{r_i})^T}{\Sigma_{r_i}^{-1}}(r_i-\mu_{r_i})] p(riX)=N(μri,Σri)=(2π)dimridet(Σri) 1exp[21(riμri)TΣri1(riμri)]

p ( X ) = N ( μ X , Σ X ) = 1 ( 2 π ) dim ⁡ X det ⁡ ( Σ X ) e x p [ − 1 2 ( X − μ X ) T Σ X − 1 ( X − μ X ) ] p(\Chi)=\mathcal{N}(\mu_\Chi,\Sigma_\Chi)=\frac{1}{\sqrt{(2\pi)^{\dim \Chi } \det(\Sigma_\Chi)}}exp[-\frac{1}{2} {(\Chi-\mu_\Chi)^T}{\Sigma_\Chi^{-1}}(\Chi-\mu_\Chi)] p(X)=N(μX,ΣX)=(2π)dimXdet(ΣX) 1exp[21(XμX)TΣX1(XμX)]

代入公式(1),可得:
X M A P = a r g min ⁡ X [ Σ i = 1 n 1 2 ( r i − μ r i ) T Σ r i − 1 ( r i − μ r i ) + 1 2 ( X − μ X ) T Σ X − 1 ( X − μ X ) ] ≜ a r g min ⁡ X [ Σ i = 1 n ∥ r i − μ r i ∥ Σ r i 2 + ∥ X − μ X ∥ Σ X 2 ] \begin{aligned} \Chi_{MAP} &= arg \min_{\Chi} [\Sigma_{i=1}^n \frac{1}{2} {(r_i-\mu_{r_i})^T}{\Sigma_{r_i}^{-1}}(r_i-\mu_{r_i}) + \frac{1}{2} {(\Chi-\mu_\Chi)^T}{\Sigma_\Chi^{-1}}(\Chi-\mu_\Chi) ] \\ &\triangleq arg \min_{\Chi} [\Sigma_{i=1}^n \| r_i - \mu_{r_i} \| ^2_{\Sigma_{r_i}}+\| \Chi - \mu_{\Chi} \| ^2_{\Sigma_\Chi} ] \end{aligned} XMAP=argXmin[Σi=1n21(riμri)TΣri1(riμri)+21(XμX)TΣX1(XμX)]argXmin[Σi=1nriμriΣri2+XμXΣX2]

下面就可以使用最小二乘问题的求解方法进行最优估计的求取了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值