【hloc】 项目流程


请添加图片描述

这个项目涉及到了视觉定位和三维重建的一系列步骤,从特征提取、匹配、三维重建到定位和结果评估。通过提供的脚本文件,用户可以方便地运行整个流程。

1. 数据集准备

首先,数据集被下载并处理。项目中涉及到了多个数据集,包括Aachen、Cambridge、CMU、4Seasons和RobotCar。每个数据集都需要进行特定的处理,比如下载、解压和格式转换。

2. 特征提取

在视觉定位和三维重建中,首先需要提取图像的特征。项目中使用了多种特征提取方法,如SIFT、SuperPoint等。特征提取的代码可以在extract_features.py中找到。示例代码如下:

features = extract_features.main(feature_conf, images, outputs, as_half=True)

3. 匹配特征

提取特征之后,需要对这些特征进行匹配,以找到两幅图像之间的对应点。项目中使用了多种特征匹配方法,如SuperGlue。匹配特征的代码可以在match_features.py中找到。示例代码如下:

matches = match_features.main(matcher_conf, pairs, feature_conf["output"], outputs)

4. 三维重建

在特征匹配之后,可以利用匹配结果进行三维重建。项目中使用了多种三维重建方法,如三角化和基于SfM(Structure from Motion)的方法。相关的代码可以在triangulation.pyreconstruction.py中找到。

5. 定位

最后一步是利用三维模型对新的图像进行定位。项目中使用了多种定位方法,如基于SfM的定位方法。定位的代码可以在localize_sfm.py中找到。示例代码如下:

localize_sfm.main(
    reference_sfm,
    dataset / "queries/*_time_queries_with_intrinsics.txt",
    loc_pairs,
    features,
    loc_matches,
    results,
    covisibility_clustering=False,
)

6. 结果评估

定位之后,需要对结果进行评估。项目中涉及到了多种评估方法,如计算定位误差和绘制定位结果的可视化。评估的代码可以在多个文件中找到,如evaluate_submission.py

7. 示例脚本

为了方便用户运行整个流程,项目中还提供了一些脚本文件,如pipeline_Aachen.pypipeline_Cambridge.pypipeline_RobotCar.py等。这些脚本文件包含了上述步骤的完整代码,用户可以通过运行这些脚本来完成整个流程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大江东去浪淘尽千古风流人物

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值