多传感器数据融合简介(转)

多传感器融合是利用计算机技术,结合多种传感器信息,进行数据处理和分析,以提高观测结果的准确性和系统智能化。常用融合算法包括加权平均法、卡尔曼滤波、多贝叶斯估计、D-S证据推理和模糊逻辑推理等。该技术广泛应用于机器人、遥感、智能交通管理和复杂工业过程控制等领域,但也面临着融合模型、容错性、数据关联二义性等问题。未来发展趋势是发展统一的融合理论、融合模型和更先进的融合算法,结合人工智能技术提高性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转自知乎网友:多传感器融合(算法)综述 - 知乎

多传感器融合(Multi-sensor Fusion, MSF)是利用计算机技术,将来自多传感器或多源的信息和数据以一定的准则进行自动分析和综合,以完成所需的决策和估计而进行的信息处理过程。

一、基本原理

多传感器融合基本原理就像人脑综合处理信息的过程一样,将各种传感器进行多层次、多空间的信息互补和优化组合处理,最终产生对观测环境的一致性解释。在这个过程中要充分利用多源数据进行合理支配与使用,而信息融合的最终目标则是基于各传感器获得的分离观测信息,通过对信息多级别、多方面组合导出更多有用信息。这不仅是利用了多个传感器相互协同操作的优势,而且也综合处理了其它信息源的数据来提高整个传感器系统的智能化。

具体来讲,多传感器数据融合原理如下:

  (1)多个不同类型传感器(有源或无源)收集观测目标的数据;

  (2)对传感器的输出数据(离散或连续的时间函数数据、输出矢量、成像数据或一个直接的属性说明)进行特征提取的变换,提取代表观测数据的特征矢量Yi;

  (3)对特征矢量Yi进行模式识别处理(如聚类算法、自适应神经网络或其他能将特征矢量Yi变换成目标属性判决的统计模式识别法等),完成各传感器关于目标的说明;

  (4)将各传感器关于目标的说明数据按同一目标进行分组,即关联;

  (5)利用融合算法将目标的各传感器数据进行合成,得到该目标的一致性解释与描述。

二、融合算法

对于多传感器系统而言,信息具有多样性和复杂性,因此对信息融合算法的基本要求是具有鲁棒性和并行处理能力。其他要求还有算法的运算速度和精度;与前续预处理系统和后续信息识别系统的接口性能;与不同技术和方法的协调能力;对信息样本的要求等。一般情况下,基于非线性的数学方法,如果具有容错性、自适应性、联想记忆和并行处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值