SLAM的起源及发展现状

SLAM(Simultaneous Localization and Mapping)是机器人领域的核心问题,始于1986年的IEEE会议。早期的研究者如Cheeseman、Crowley和Durrant-Whyte等奠定了统计概率方法的基础。随着技术的发展,SLAM在理论层面取得进展,但在实际应用中,如感知丰富地图的构建仍面临挑战。SLAM的研究经历了从独立估计到联合估计的转变,认识到地标间相关性的重要性,以及对收敛性和稳定性的探索。如今,SLAM在室内、室外、水下等多个环境中有广泛应用,并持续受到广泛关注。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        SLAM的英文全称为Simultaneous Localization and Mapping,中文意思是同步定位与构图。SLAM问题回答了对于一个被放置在未知位置的未知环境中的移动机器人来递增的构建周围环境的连续性地图并同时估计自身在地图中的位置是否为可行的。SLAM问题的解决方案被视为移动机器人领域的“圣杯”,因为它实现了机器人真正意义上的自主性。

         在过去的十年里,SLAM问题的解决方案一直是机器人邻域最显著的成就之一。SLAM作为一种理论方法,它被以多种不同形式的方式被提出并解决,它被广泛的应用到了室内、室外、水下和空中等的环境中。在理论和概念层面上,SLAM现在可以被认为是一个已解决的问题了。然而,在实际实现更通用的SLAM解决方案方面,尤其是在构建和使用感知丰富的地图作为SLAM算法的一部分方面,仍然存在大量棘手的问题。

SLAM的历史

        SLAM问题起源于1986年在美国旧金山召开的IEEE机器人与自动化会议上。在这一时期统计概率的方法才刚刚开始被同时引入到机器人和人工智能领域。大量的研究人员一直在研究如何将估计理论应应用在构图与定位的问题上;这些人包括Peter Cheeseman、Jim Crowley以及Hugh Durrant-Whyte。在整个会议过程中,许多桌子上充满了关于连续性建图的长篇讨论。一路上,Raja Chatila、Oliver Faugeras、Randal Smith、等其他学者也对这次对话做出了有益的贡献。

       这次对话的结果是人们认识到一致性概率映射是机器人学的一个基本问题,需要解决主要的概念和计算问题。在接下来的一些年份中,大量的重要的论文被发表了出来。Smith、Cheesman[R. Smith and P. Cheesman, “On the representation of spatial uncertainty,” Int. J. Robot. Res., vol. 5, no. 4, pp. 56–68, 1987] 和 Durrant-Whyte[H.F. Durrant-Whyte, “Uncertain geometry in robotics,” IEEE Trans. Robot. Automat., vol. 4, no. 1, pp. 23–31, 1988] 建立了用于描述地标和操纵几何不确定性关系的统计学基础,这项工作的一个关键点表明了,对地图上不同地标位置的估计之间必须有高度的相关性,而且这些相关性确实会随着连续观测而增加。</

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_IRONMAN_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值