如何使用Discovery Studio进行反向找靶

本文详细介绍了使用Discovery Studio进行反向找靶的三种主要方法:反向分子对接、药效团模型搜索和基于配体分子相似性分析。反向分子对接依赖于对接能量来预测靶标,药效团模型搜索关注关键药效团匹配,而配体相似性分析基于分子形状。Discovery Studio提供了相应的工具和数据库支持,如PharmaDB和Invert Docking (LibDock),以提高预测准确性并实现高效靶标筛选。
摘要由CSDN通过智能技术生成

反向找靶又被叫做靶点垂钓(Target Fishing)目前,通过计算机辅助进行反向找靶主要有三种方法:反向分子对接(Inverse Docking)、药效团模型搜索(Compound Profiling)及基于配体分子相似性分析(Lignad Similarity Search)。这三种方法可以实现反向筛选以搜索小分子药物的未知靶标、非预期靶标或二级靶点。这三种不同的计算方法是互补的,可以相互结合使用。相比之下,形状和药效团筛选更简单、更快捷,而反向对接更复杂、更慢。我们将在以下部分中详细介绍这三种方法。

 

基于配体分子相似性搜索(Lignad Similarity Search)

从二维(2D)的角度来看,形状筛选的基本原理是“结构相似的分子可能通过靶向相同的蛋白质而具有相似的生物活性;从三维(3D)的角度来看,基本原理是具有相似体积的分子在蛋白质的活性口袋中,可能具有与相同或相似大小的空间有效结合的潜力(考虑配体诱导的拟合效应)。为了使用形状筛选来预测小分子的靶标,需要用蛋白质靶标注释的小分子配体数据库。然后,可以单独测量查询分子与数据库中每个配体的整体形状相似性。最后,具有高相似性分数的匹配分子的蛋白质靶标可以被认为是查询分子的潜在靶标。形状筛选涉及两个级别的映射:第一个映射在查询分子和数据库中的配体之间,第二个映射在数据库中匹配的配体与其注释的蛋白质靶标之间。

形状相似性比较基于小分子的2D或3D拓扑结构。值得注意的是,2D方法最初是为了在配对分子之间获得更多相同的部分而创建的,而3D方法可用于增强支架多样性。2D方法中分子相似性比较的通用描述符是FingerPrint2D(FP2),它使用简单的位向量来表示各种化学特性,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东方科软

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值