空间转录组技术是一种新兴的研究方法,可以同时获取组织或细胞样本中基因表达的空间信息。它在多个领域的科研中都有广泛的应用,包括动物、植物、微生物和医学等方面。
在动物领域,它帮助揭示大脑神经回路与行为的关系、理解胚胎发育中细胞命运的决定过程,以及探讨肿瘤微环境中肿瘤细胞与周围细胞的相互作用及其空间分布。在植物领域,该技术能够研究植物不同部位的基因表达特征,分析植物在逆境下的空间基因表达变化,以及探索根际微生物与植物根系的相互作用。在微生物领域,空间转录组有助于揭示微生物间及其与环境的空间关系,以及生物膜中微生物群落的基因表达模式。在医学领域,空间转录组技术则促进了对疾病机制的理解、药物开发的优化以及个性化治疗方案的制定。
目前市面上使用频次较高的主要是空间条形码的ST平台,例如Visium和Stereo-seq。小伙伴们也在跃跃欲试了,今天给大家带来一篇Stereo-seq空间转录组的分析内容,希望对大家有所帮助。
1. 下机数据质控、基因组比对以及基因表达定量
测序数据下机后,会对read1和read2进行下机数据的质控。具体质控过程如下:
首先,使用ST_BarcodeMap工具通过read1 中的CID序列与芯片上的barcodes序列进行比对,并提取含有效CID的read pairs;然后对含有有效CID的read pairs,将read1的CID序列转换为reads 在切片上的空间位置信息,写入read2的ID 中;最后使用Fastp对read2的Valid reads 进行过滤得到Clean reads。
然后使用STAR软件将Clean reads比对到参考基因组上,并根据基因注释文件,分别统计比对到外显子区、内含子区和基因间区等区域的reads数。
使用Bam2Gem软件,将比对到参考基因组唯一位置的reads(Uniquely Mapping Reads)与基因的对应关系进行统计,并根据MID校正计算得到所有基因的表达量。
在时空组学技术(STOmics)中,Bin是分析数据统计的基本单元,用于标识分析单元的大小。一个Bin表示一个固定大小的区域,区域内DNB表达量累加,区域间不重合,数字表示单边DNB数量。时空芯片上每个DNB在基因表达热图上表现为一个像素点,此时的分析单元为Bin1,即一个像素点只包含一个 DNB 的数据。将相邻N×N个DNB数据合并,在基因表达热图上以一 个像素点的形式展示,此时分析单元为BinN。如Bin100表示一个分析单元包含100×100=10000个 DNB区域的数据。Bin大小的选择会根据细胞大小、基因数量进行调整。取Bin200对测序饱和度进行统计,结果见下图。