自动驾驶---Perception之大模型应用

1 背景

        自动驾驶感知(Perception)模块在自动驾驶系统中扮演着至关重要的角色,它负责收集、处理并理解车辆周围的环境信息。随着深度学习技术的快速发展,大模型也逐渐在自动驾驶感知模块中得到了广泛应用。本篇博客主要介绍大模型在感知模块的应用。

        前面也介绍过如下几篇Perception相关的文章,有兴趣的读者可以了解相关内容:

        《自动驾驶---Perception之IPM图和BEV图

        《自动驾驶---Perception之视觉点云&雷达点云

        《自动驾驶---Perception之Lidar点云3D检测

        《自动驾驶---Perception之Occupancy

        《自动驾驶---视觉Transformer的应用

        《自动驾驶---Perception之多模预测

2 感知大模型

2.1 初代模型

        大模型,如卷积神经网络(CNN)、循环神经网络(RNN)等,具有大量的参数和复杂的网络结构,能够处理大量的数据并提取出有用的特征。在自动驾驶感知模块中,大模型主要用于以下几个方面:

  1. 图像识别:通过CNN对摄像头采集的图像进行特征提取和分类,实现车辆、行人、交通标志等目标的检测与识别。这有助于自动驾驶系统准确地感知周围环境,从而做出正确的决策。
  2. 目标检测与跟踪:大模型能够实时地对图像中的目标进行检测和跟踪,提供目标的位置、速度、大小等信息。这对于自动驾驶系统来说至关重要,因为它需要了解周围车辆和行人的动态,以便做出安全的驾驶决策。
  3. 语义分割:通过对图像进行像素级别的分类,大模型可以实现道路、车辆、行人等元素的语义分割。这有助于自动驾驶系统更深入地理解周围环境,提高道路场景的感知精度。
  4. 场景理解:大模型可以通过多模态信息融合,实现对复杂场景的理解。例如,结合摄像头、雷达、激光雷达等传感器数据,大模型可以识别交通拥堵、恶劣天气等复杂场景,并为自动驾驶系统提供相应的应对策略。

        在自动驾驶感知模块中使用大模型,可以显著提高自动驾驶系统的感知精度和鲁棒性。然而,这也对计算资源、存储空间和实时性等方面提出了更高的要求。因此,在实际应用中,需要根据具体的场景和需求来选择合适的大模型,并进行相应的优化和部署。英伟达发表过一篇早期自动驾驶端到端的研究---《自动驾驶---End-to-end用于Planning行为规划》中提到的论文《End to End Learning for Self-Driving Cars》。

2.2 Transformer大模型

        自动驾驶感知模块使用Transformer大模型是一种趋势,这主要得益于Transformer模型在自然语言处理和计算机视觉领域的杰出性能。相比于传统的卷积神经网络(CNN)和循环神经网络(RNN),Transformer模型具有建模长距离依赖关系的能力,能更好地捕捉输入序列中的全局信息。

        在自动驾驶的感知任务中,Transformer大模型可以应用于多个方面,包括目标检测和跟踪、语义分割以及场景理解等。

  1. 目标检测和跟踪:通过Transformer模型,自动驾驶系统可以更有效地检测并跟踪道路上的车辆、行人、交通标志等目标。这种能力使得自动驾驶车辆能够更准确地识别并响应周围环境的变化。
  2. 语义分割:Transformer模型可以用于对图像进行像素级别的分类,将图像划分为不同的区域,如道路、车辆、行人等。这种语义分割能力有助于自动驾驶车辆更深入地理解周围环境,并做出更准确的决策。
  3. 场景理解:Transformer模型可以融合来自不同传感器的数据,如摄像头、雷达和激光雷达等,以实现对复杂场景的理解。这种能力使得自动驾驶车辆能够更好地适应不同的驾驶环境,如交通拥堵、恶劣天气等。

        在实际应用中,已经有一些研究者提出了基于Transformer和时序模型在鸟瞰图(BEV)视角下优化特征的环视物体检测方案,如BEVFormer。这种方案在nuScenes数据集上取得了显著的性能提升,证明了Transformer大模型在自动驾驶感知任务中的有效性。

        此外,自动驾驶感知模块使用Transformer大模型还有助于实现数据闭环。通过数据挖掘、自动标注、模型训练和仿真测试等步骤,可以不断优化和改进感知模块的性能。这种数据闭环能力使得自动驾驶系统能够不断学习和适应新的驾驶环境,提高自动驾驶的安全性和可靠性。

3 Transformer的应用

        Transformer在自动驾驶中的应用主要体现在以下几个方面:

  • 目标检测与跟踪:在自动驾驶的感知任务中,目标检测与跟踪是至关重要的。Transformer模型可以通过其强大的序列处理能力,有效地从复杂的传感器数据中提取出关键信息,如车辆、行人、交通标志等目标的检测和跟踪。这种能力使得自动驾驶系统能够更准确地识别并响应周围环境的变化。

        以下是一个使用 Transformer 进行目标检测的简单代码示例:

import torch
import torch.nn as nn
import torch.nn.functional as F

class TransformerDetector(nn.Module):
    def __init__(self, input_dim, hidden_dim, num_layers, num_classes):
        super(TransformerDetector, self).__init__()
        self.transformer = nn.Transformer(d_model=input_dim, nhead=8, num_encoder_layers=num_layers, num_decoder_layers=num_layers)
        self.fc = nn.Linear(input_dim, num_classes)

    def forward(self, x):
        x = self.transformer(x, x)
        x = self.fc(x)
        return x

# 模型实例化
detector = TransformerDetector(input_dim=1024, hidden_dim=128, num_layers=6, num_classes=5)

# 输入数据
x = torch.randn(1, 10, 1024)

# 前向传播
output = detector(x)

# 输出结果
print(output)
  • 语义分割:Transformer也被应用于图像的语义分割任务中。通过对图像进行像素级别的分类,Transformer可以将图像划分为不同的区域,如道路、车辆、行人等。这种语义分割能力有助于自动驾驶车辆更深入地理解周围环境,并做出更准确的决策。
  • 多传感器数据融合:自动驾驶车辆通常配备有多种传感器,如激光雷达、摄像头、雷达等。Transformer模型可以处理这些不同来源的传感器数据,并通过其强大的建模能力将这些数据融合起来,从而提供更全面、更准确的感知结果。
  • 场景理解:Transformer可以帮助自动驾驶车辆理解复杂的交通场景。通过处理多模态数据(如图像、点云等),Transformer可以学习到场景中的空间布局、交通流动态等信息,从而帮助车辆做出更合适的驾驶决策。
  • 长距离依赖关系建模:相比于传统的卷积神经网络(CNN)和循环神经网络(RNN),Transformer模型具有建模长距离依赖关系的能力。在自动驾驶感知任务中,这种能力使得Transformer能够更好地捕捉输入序列中的全局信息,如道路上的远距离障碍物或交通标志等。
  • BEV(Bird's Eye View)感知:BEV是一种将不同视角的摄像头采集到的图片统一转换到上帝视角的技术。在自动驾驶中,Transformer可以与BEV相结合,帮助车辆从更高的视角理解周围环境。通过处理BEV数据,Transformer可以预测其他车辆和行人的未来运动轨迹,并为自动驾驶汽车提供多种可能的路径选择。

        Transformer在自动驾驶感知中的应用使得车辆能够更准确地理解周围环境,提高感知的准确性和可靠性,从而为后续的决策和规划提供可靠的数据支持。

        下面再详细描述Transformer在BEV中的应用。Transformer在BEV(Bird's Eye View)中的应用主要集中在自动驾驶系统的感知和决策阶段。下面是Transformer在BEV中应用的详细介绍:

  • 数据预处理

    • 将激光雷达、雷达和相机等多模态数据转换为BEV格式。这通常涉及将三维点云数据投影到二维平面上,并对该平面进行栅格化以生成高度图;将雷达的距离、角度信息转换为笛卡尔坐标并在BEV平面上进行栅格化;将相机图像数据投影到BEV平面上,生成颜色或强度图。
    • 进行必要的预处理操作,如数据增强、归一化等,以提高模型的训练效果。
  • 感知模块

    • 在自动驾驶的感知阶段,Transformer模型用于从多模态数据中提取特征。这些特征可以来自激光雷达点云、图像、雷达数据等。
    • Transformer模型通过自注意力机制捕捉输入序列中的长距离依赖关系,从而学习到数据的内在结构和相互关系。这使得模型能够更有效地识别和定位环境中的障碍物。
    • 将BEV格式的数据输入到Transformer模型中,模型能够学习到BEV视角下环境的空间布局和动态变化。这有助于车辆更准确地理解周围环境,提高感知的准确性和可靠性。
  • 决策模块

    • 在决策阶段,基于Transformer的BEV技术可以为自动驾驶汽车提供清晰的环境表示。这包括道路结构、交通信号灯、行人过马路等实时场景信息。
    • 通过处理BEV数据,Transformer模型可以预测其他车辆和行人的未来运动轨迹,并为自动驾驶汽车提供多种可能的路径选择。这种预测能力使得车辆能够提前做出安全的驾驶决策。
    • Transformer模型还可以综合考虑多种传感器数据,并融合不同视角的图像信息,以提供更全面的环境感知。这有助于提高自动驾驶系统的鲁棒性和安全性。

        Transformer在BEV中的应用使得自动驾驶系统能够更准确地理解周围环境,提高感知和决策的准确性。通过将多模态数据转换为BEV格式并输入到Transformer模型中,系统能够学习到BEV视角下的环境空间布局和动态变化,从而做出更安全的驾驶决策。

3 总结

        其实从特斯拉的自动驾驶技术迭代史《自动驾驶---Tesla的自动驾驶技术进化史》来看,端到端的发展也并不是一蹴而就的,而是通过感知技术在端到端上的逐步应用而演变来的。因此可以理解为端到端技术的应用最开始就在感知模块,随后随着技术的成熟,逐渐扩展到其它模块。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能汽车人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值