【智能算法应用】智能算法优化BP神经网络思路

本文讨论了如何通过反向传播算法优化BP神经网络的权值和阈值,提出使用全局搜索策略以避免局部最优解。针对5-3-1网络结构,设计了包含训练集和测试集预测误差的目标函数,旨在提升网络性能和泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述


1.思路

在BP神经网络结构中,权值和阈值被视为模型的参数,它们在训练过程中需要通过反向传播算法进行学习,以使得网络的输出尽可能地接近真实标签。这意味着网络的目标是通过最小化均方误差(MSE)来调整这些参数。
智能算法能够通过全局搜索策略寻找到最优解,避免了陷入局部最优解。对于BP神经网络的参数优化,这意味着可以更好地调整权值和阈值,以提高网络的性能和泛化能力。

2.设计

例如,对于5-3-1的BP神经网络,可以得到输入层、隐含层和输出层节点数分别为5,3,1。

inputnum = 5; %输入层
hiddennum = 3; %隐含层
outputnum = 1; %输出层

因此,需要确定优化的目标为3个隐含层的权值和阈值,输出层的阈值。

dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ; % 维度

智能算法优化存在一个目标函数,将这一理念转为BP神经网络中就变为什么指标展示BP神经网络性能良好。(通常可以考虑训练集预测误差和测试集预测误差)因此,目标函数可以设计为:
f i t n e s s = a r g m i n ( m s e ( T t r a i n e r r ) + m e s ( T t e s t e r r ) ) fitness=argmin(mse(T_{train}err)+mes(T_{test}err)) fitness=argmin(mse(Ttrainerr)+mes(Ttesterr))
PS:考虑不破坏函数结构,可以采用全局变量进行变量传递~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值