【论文复现】多策略改进蜘蛛黄蜂优化算法用于工程优化问题


在这里插入图片描述

1.摘要

蜘蛛黄蜂优化(SWO)算法是一种基于群体智能的优化方法,模拟雌性蜘蛛黄蜂的捕猎、筑巢和交配行为,具备快速搜索和高精度的优点。然而,在处理复杂的优化问题时,SWO算法常常面临局部最优、早期收敛较慢以及权衡率参数需要手动调整等问题。因此,本文提出了多策略改进的蜘蛛黄蜂优化算法(MISWO),该算法通过引入灰狼算法增强早期收敛性,优化初始种群的适应度,从而提高全局优化能力。同时,结合自适应步长操作算子和高斯变异,能够在不同优化阶段自动调整搜索范围,提升优化精度并有效避免局部最优。

2.蜘蛛黄蜂优化算法SWO原理

SCI二区TOP|蜘蛛黄蜂优化算法(SWO)原理及实现

3.改进策略

基于灰狼算法初始化种群

【智能算法】灰狼算法(GWO)原理及实现

蜘蛛黄蜂优化(SWO)算法虽然具有较强的种群多样性,有助于搜索最优解,但这种多样性往往会影响算法的收敛性能。本文提出了一种结合灰狼算法初始化种群策略,其首先通过GWO算法初始化蜘蛛黄蜂种群,使得初始种群分布更加集中,优化方向更为明确,从而加速算法的收敛过程:
S W I → = L + r ∗ ( H − L ) G I → = F l ( S W i → ) \overrightarrow{SW_{\mathrm{I}}}=\mathbf{L}+\mathbf{r}*(\mathbf{H}-\mathbf{L})\\\overrightarrow{G_{\mathrm{I}}}=F_{l}\left(\overrightarrow{SW_{\mathrm{i}}}\right) SWI =L+r(HL)GI =Fl(SWi )

自适应步长算子和动态权衡率

在蜘蛛黄蜂优化(SWO)算法的捕猎行为中,采用两种不同的步长进行解空间探索:大步长搜索用于维持种群的全局搜索能力,小步长搜索则专注于已知解的邻域探索。雌性黄蜂通过持续的大步长搜索寻找适合后代的蜘蛛:
S W i → t + 1 = S W i → t + μ 1 ∗ ( S W a → t − S W b → t ) \overrightarrow{SW_\mathrm{i}}^{t+1}=\overrightarrow{SW_\mathrm{i}}^t+\mu_1*\left(\overrightarrow{SW_a}^t-\overrightarrow{SW_b}^t\right) SWi t+1=SWi t+μ1(SWa tSWb t)

其中, μ 1 \mu_1 μ1控制蜘蛛黄蜂的移动方向:
μ 1 = ∣ r n ∣ ∗ r 1 \mu_1=\begin{vmatrix}rn\end{vmatrix}*r_1 μ1= rn r1

使用小步长探索被丢弃蜘蛛周围的区域:
S W i → t + 1 = S W c → t + μ 2 ∗ ( L + r 2 ∗ ( H − L ) ) \overrightarrow{SW_i}^{t+1}=\overrightarrow{SW_c}^t+\mu_2*(\mathbf{L}+\mathbf{r}_2*(\mathbf{H}-\mathbf{L})) SWi t+1=SWc t+μ2(L+r2(HL))

蜘蛛黄蜂优化(SWO)算法在更新种群时采用两种随机选择的搜索方法,但由于使用固定步长,限制了算法在早期快速识别高质量解的能力,并影响了后期的收敛精度。为了解决这一问题,本文引入了自适应步长操作算子 h h h,该操作算子确保在早期阶段保持全局搜索能力,并在后期加快收敛速度:
h = ( e − t t max ⁡ ) 20 h=\left(e^{-\sqrt{\frac{t}{t_{\max}}}}\right)^{20} h=(etmaxt )20

为了防止蜘蛛黄蜂优化(SWO)算法在搜索过程中陷入局部最优解,本文引入了高斯变异策略。高斯变异利用高斯分布生成变异向量,能够在均值附近产生较高概率的数据点,进而在当前最优解附近进行精细搜索,提升局部搜索能力。将高斯变异引入自适应步长操作算子和搜索阶段更新:
{ S W → i t + 1 = ( S W → i t + μ 1 ∗ ( S W → a t − S W → b t ) ∗ h ) + G a u s s S W → i t + 1 = ( S W → c t + μ 2 ∗ ( L + r 2 → ∗ ( H − L ) ) ∗ h ) + G a u s s \left\{\begin{array}{c}\overrightarrow{SW}_{\mathrm{i}}^{t+1}=\left(\overrightarrow{SW}_{\mathrm{i}}^{t}+\mu_{1}*\left(\overrightarrow{SW}_{a}^{t}-\overrightarrow{SW}_{b}^{t}\right)*h\right)+Gauss\\\overrightarrow{SW}_{\mathrm{i}}^{t+1}=\left(\overrightarrow{SW}_{\mathrm{c}}^{t}+\mu_{2}*(\mathbf{L}+\overrightarrow{r_{2}}*(\mathbf{H}-\mathbf{L}))*h\right)+Gauss\end{array}\right. SW it+1=(SW it+μ1(SW atSW bt)h)+GaussSW it+1=(SW ct+μ2(L+r2 (HL))h)+Gauss

权衡率 T R TR TR控制着捕猎和交配行为之间的平衡:
{ F ( H ) or F ( N ) rand < T R F ( M ) otherwise \left\{\begin{array}{c}F(H)\text{or}F(N)\text{rand}<TR\\F(M)\text{otherwise}\end{array}\right. {F(H)orF(N)rand<TRF(M)otherwise

其中, F ( H ) , F ( N ) F(H),F(N) F(H),F(N)表示狩猎或筑巢行为, F ( M ) F(M) F(M)表示交配行为。自适应步长算子表述为:
T R n = 1 − ( e ( t t max ⁡ − 1 ) ∗ rand ⁡ ( ) ) TR_n=1-\left(e^{\left(\sqrt{\frac{t}{t_{\max}}}-1\right)*\operatorname{rand}()}\right) TRn=1(e(tmaxt 1)rand())

动态透镜成像反向学习策略

反向学习通过计算当前种群位置的反向解来扩展搜索空间,从而显著提升优化性能并加速收敛。然而,随着迭代的进行,反向学习在帮助算法逃脱局部最优解方面可能逐渐失效,导致收敛精度下降。本文提出了动态透镜成像反向学习策略,其灵感来自于凸透镜成像原理,该策略通过模拟透镜成像效应,动态调整搜索范围:
x ∗ = ( a + b ) 2 + ( a + b ) 2 k − x k x^*=\frac{(a+b)}{2}+\frac{(a+b)}{2k}-\frac{x}{k} x=2(a+b)+2k(a+b)kx

其中,参数 k k k表述为:
k = ( 1 0 3 + ( 3 t t max ⁡ ) 1 2 ) 10 k=\left(10^3+\left(\frac{3t}{t_{\max}}\right)^{\frac12}\right)^{10} k=(103+(tmax3t)21)10

在这里插入图片描述

4.结果展示

CEC2005
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

5.参考文献

[1] Sui J, Tian Z, Wang Z. Multiple strategies improved spider wasp optimization for engineering optimization problem solving[J]. Scientific Reports, 2024, 14(1): 29048.

6.代码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值