1.摘要
鲸鱼优化算法(WOA)作为一种有效的优化算法,虽然具有较强的搜索能力,但容易陷入局部最优解并且收敛速度较慢,这限制了其在复杂问题中的应用。为了解决这些问题,本文提出了一种多策略鲸鱼优化算法(MSWOA),MSWOA采用混沌Logistic映射生成初始种群,其通过设置自适应权重和动态收敛因子,增强了探索与开发之间的平衡,从而提升了算法的搜索能力和收敛效率。并且,MSWOA引入了Lévy飞行机制,这一机制有助于保持种群的多样性,避免算法陷入局部最优解。最后,MSWOA引入了进化种群动力学(EPD)机制,进一步提高了搜索个体在寻找最优解时的效率。
2.鲸鱼优化算法WOA原理
3.改进策略
混沌映射初始化
混沌映射具有规律性、随机性和可遍历性,本文提出Logistic混沌映射初始化种群,通过其迭代方程能够充分提取并捕捉解空间中的信息:
λ
t
+
1
=
μ
×
λ
t
(
1
−
λ
t
)
\lambda_{t+1}=\mu\times\lambda_{t}\left(1-\lambda_{t}\right)
λt+1=μ×λt(1−λt)
动态收敛因子
在鲸鱼优化算法中,参数
A
A
A用于调节局部和全局搜索能力。
A
A
A受收敛因子
a
a
a的影响,
a
a
a较大时,算法进行全局搜索,具备较强的跳出局部最优解的能力;
a
a
a 较小时,算法表现出较强的局部搜索能力并加速收敛。因此,本文提出一种态收敛因子:
a
(
t
)
=
m
e
n
t
T
max
a(t)=\frac{m}{e^{n\frac{t}{T_{\max}}}}
a(t)=enTmaxtm
自适应惯性权重
惯性权重是鲸鱼优化算法中的关键参数,对目标函数的优化至关重要。较大的惯性权重有助于增强算法的全局搜索能力,能够探索更广泛的解空间;而较小的惯性权重则增强了算法的局部搜索能力,帮助精细化搜索最优解附近的区域。本文提出了一种根据迭代次数自适应调整惯性权重的策略:
w
(
t
)
=
m
×
cos
n
(
log
(
1
+
e
t
T
max
)
)
+
0.5
w(t)=m\times\cos^n(\log(1+\mathrm{e}^{\frac{t}{T_{\max}}}))+0.5
w(t)=m×cosn(log(1+eTmaxt))+0.5
通过替换自适应惯性权重,鲸鱼位置更新:
X
→
(
t
+
1
)
=
w
(
t
)
×
X
‾
∗
(
t
)
−
A
‾
⋅
D
‾
X
→
(
t
+
1
)
=
w
(
t
)
×
X
→
r
a
n
d
(
t
)
−
A
→
⋅
∣
C
→
⋅
X
→
r
a
n
d
(
t
)
−
X
→
(
t
)
X
→
(
t
+
1
)
=
D
′
‾
⋅
e
b
l
⋅
cos
(
2
π
l
)
+
w
(
t
)
×
X
∗
‾
(
t
)
\begin{aligned} & \overrightarrow{X}(t+1)=w(t)\times\overline{X}^{*}(t)-\overline{A}\cdot\overline{D} \\ & \overrightarrow{X}(t+1)=w(t)\times\overrightarrow{X}_{\mathrm{rand}}(t)-\overrightarrow{A}\cdot\mid\overrightarrow{C}\cdot\overrightarrow{X}_{\mathrm{rand}}(t)-\overrightarrow{X}(t) \\ & \overrightarrow{X}(t+1)=\overline{D^{\prime}}\cdot e^{bl}\cdot\cos(2\pi l)+w(t)\times\overline{X^{*}}(t) \end{aligned}
X(t+1)=w(t)×X∗(t)−A⋅DX(t+1)=w(t)×Xrand(t)−A⋅∣C⋅Xrand(t)−X(t)X(t+1)=D′⋅ebl⋅cos(2πl)+w(t)×X∗(t)
Lévy飞行机制
Lévy飞行通过交替进行高频的短程探索和低频的长程探索,避免了在广泛搜索最优解时陷入局部最优解。因此,在许多算法中引入Lévy飞行能够增加种群分布的多样性,从而加速全局最优解的搜索过程。种群位置更新:
X
i
(
t
+
1
)
=
w
(
t
)
×
X
i
(
t
)
+
(
2
r
−
1
)
⊗
(
X
i
(
t
)
+
r
⊗
s
)
X_i(t+1)=w(t)\times X_i(t)+(2r-1)\otimes(X_i(t)+r\otimes s)
Xi(t+1)=w(t)×Xi(t)+(2r−1)⊗(Xi(t)+r⊗s)
进化种群动力学
EPD(进化种群动力学)理论基于自组织临界理论,认为物种在没有外部干扰的情况下,通过自然突变能够平衡种群内部的矛盾,并淘汰适应性差的个体。EPD的成功在于通过去除适应性差的个体,提高种群的整体表现。在基于种群的算法中,EPD通过首先去除适应性差的个体,然后在最优个体周围对其进行变异或重新定位,从而改善种群质量。在鲸鱼优化算法WOA中,EPD通过每次迭代淘汰一半最差的搜索个体,并在两个随机位置重新初始化,帮助提升算法的搜索效率。将较差候选解重新定位到最优个体位置附近:
X
→
(
t
+
1
)
=
X
→
∗
(
t
)
+
s
i
g
n
(
r
−
0.5
)
×
(
u
b
−
l
b
⋅
r
+
l
b
)
\overrightarrow{X}(t+1)=\overrightarrow{X}^*(t)+\mathrm{sign}(r-0.5)\times(ub-lb\cdot r+lb)
X(t+1)=X∗(t)+sign(r−0.5)×(ub−lb⋅r+lb)
将较差候选解重新定位到原始位置:
X
→
(
t
+
1
)
=
X
→
(
t
)
+
s
i
g
n
(
r
−
0.5
)
×
(
u
b
−
l
b
⋅
r
+
l
b
)
\overrightarrow{X}(t+1)=\overrightarrow{X}(t)+\mathrm{sign}(\mathrm{r}-0.5)\times(ub-lb\cdot r+lb)
X(t+1)=X(t)+sign(r−0.5)×(ub−lb⋅r+lb)
伪代码
4.结果展示
CEC2019
5.参考文献
[1] Yang W, Xia K, Fan S, et al. A multi-strategy whale optimization algorithm and its application[J]. Engineering Applications of Artificial Intelligence, 2022, 108: 104558.