【论文复现】一种多策略鲸鱼优化算法及其应用


在这里插入图片描述

1.摘要

鲸鱼优化算法(WOA)作为一种有效的优化算法,虽然具有较强的搜索能力,但容易陷入局部最优解并且收敛速度较慢,这限制了其在复杂问题中的应用。为了解决这些问题,本文提出了一种多策略鲸鱼优化算法(MSWOA),MSWOA采用混沌Logistic映射生成初始种群,其通过设置自适应权重和动态收敛因子,增强了探索与开发之间的平衡,从而提升了算法的搜索能力和收敛效率。并且,MSWOA引入了Lévy飞行机制,这一机制有助于保持种群的多样性,避免算法陷入局部最优解。最后,MSWOA引入了进化种群动力学(EPD)机制,进一步提高了搜索个体在寻找最优解时的效率。

2.鲸鱼优化算法WOA原理

SCI二区|鲸鱼优化算法(WOA)原理及实现

3.改进策略

混沌映射初始化

混沌映射具有规律性、随机性和可遍历性,本文提出Logistic混沌映射初始化种群,通过其迭代方程能够充分提取并捕捉解空间中的信息:
λ t + 1 = μ × λ t ( 1 − λ t ) \lambda_{t+1}=\mu\times\lambda_{t}\left(1-\lambda_{t}\right) λt+1=μ×λt(1λt)

动态收敛因子

在鲸鱼优化算法中,参数 A A A用于调节局部和全局搜索能力。 A A A受收敛因子 a a a的影响, a a a较大时,算法进行全局搜索,具备较强的跳出局部最优解的能力; a a a 较小时,算法表现出较强的局部搜索能力并加速收敛。因此,本文提出一种态收敛因子:
a ( t ) = m e n t T max ⁡ a(t)=\frac{m}{e^{n\frac{t}{T_{\max}}}} a(t)=enTmaxtm

自适应惯性权重

惯性权重是鲸鱼优化算法中的关键参数,对目标函数的优化至关重要。较大的惯性权重有助于增强算法的全局搜索能力,能够探索更广泛的解空间;而较小的惯性权重则增强了算法的局部搜索能力,帮助精细化搜索最优解附近的区域。本文提出了一种根据迭代次数自适应调整惯性权重的策略:
w ( t ) = m × cos ⁡ n ( log ⁡ ( 1 + e t T max ⁡ ) ) + 0.5 w(t)=m\times\cos^n(\log(1+\mathrm{e}^{\frac{t}{T_{\max}}}))+0.5 w(t)=m×cosn(log(1+eTmaxt))+0.5

通过替换自适应惯性权重,鲸鱼位置更新:
X → ( t + 1 ) = w ( t ) × X ‾ ∗ ( t ) − A ‾ ⋅ D ‾ X → ( t + 1 ) = w ( t ) × X → r a n d ( t ) − A → ⋅ ∣ C → ⋅ X → r a n d ( t ) − X → ( t ) X → ( t + 1 ) = D ′ ‾ ⋅ e b l ⋅ cos ⁡ ( 2 π l ) + w ( t ) × X ∗ ‾ ( t ) \begin{aligned} & \overrightarrow{X}(t+1)=w(t)\times\overline{X}^{*}(t)-\overline{A}\cdot\overline{D} \\ & \overrightarrow{X}(t+1)=w(t)\times\overrightarrow{X}_{\mathrm{rand}}(t)-\overrightarrow{A}\cdot\mid\overrightarrow{C}\cdot\overrightarrow{X}_{\mathrm{rand}}(t)-\overrightarrow{X}(t) \\ & \overrightarrow{X}(t+1)=\overline{D^{\prime}}\cdot e^{bl}\cdot\cos(2\pi l)+w(t)\times\overline{X^{*}}(t) \end{aligned} X (t+1)=w(t)×X(t)ADX (t+1)=w(t)×X rand(t)A C X rand(t)X (t)X (t+1)=Deblcos(2πl)+w(t)×X(t)

Lévy飞行机制

Lévy飞行通过交替进行高频的短程探索和低频的长程探索,避免了在广泛搜索最优解时陷入局部最优解。因此,在许多算法中引入Lévy飞行能够增加种群分布的多样性,从而加速全局最优解的搜索过程。种群位置更新:
X i ( t + 1 ) = w ( t ) × X i ( t ) + ( 2 r − 1 ) ⊗ ( X i ( t ) + r ⊗ s ) X_i(t+1)=w(t)\times X_i(t)+(2r-1)\otimes(X_i(t)+r\otimes s) Xi(t+1)=w(t)×Xi(t)+(2r1)(Xi(t)+rs)

进化种群动力学

EPD(进化种群动力学)理论基于自组织临界理论,认为物种在没有外部干扰的情况下,通过自然突变能够平衡种群内部的矛盾,并淘汰适应性差的个体。EPD的成功在于通过去除适应性差的个体,提高种群的整体表现。在基于种群的算法中,EPD通过首先去除适应性差的个体,然后在最优个体周围对其进行变异或重新定位,从而改善种群质量。在鲸鱼优化算法WOA中,EPD通过每次迭代淘汰一半最差的搜索个体,并在两个随机位置重新初始化,帮助提升算法的搜索效率。将较差候选解重新定位到最优个体位置附近:
X → ( t + 1 ) = X → ∗ ( t ) + s i g n ( r − 0.5 ) × ( u b − l b ⋅ r + l b ) \overrightarrow{X}(t+1)=\overrightarrow{X}^*(t)+\mathrm{sign}(r-0.5)\times(ub-lb\cdot r+lb) X (t+1)=X (t)+sign(r0.5)×(ublbr+lb)

将较差候选解重新定位到原始位置:
X → ( t + 1 ) = X → ( t ) + s i g n ( r − 0.5 ) × ( u b − l b ⋅ r + l b ) \overrightarrow{X}(t+1)=\overrightarrow{X}(t)+\mathrm{sign}(\mathrm{r}-0.5)\times(ub-lb\cdot r+lb) X (t+1)=X (t)+sign(r0.5)×(ublbr+lb)

伪代码

在这里插入图片描述

4.结果展示

CEC2019

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.参考文献

[1] Yang W, Xia K, Fan S, et al. A multi-strategy whale optimization algorithm and its application[J]. Engineering Applications of Artificial Intelligence, 2022, 108: 104558.

6.代码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值