2021年ASOC SCI2区TOP:非线性混沌哈里斯鹰优化算法NCHHO,深度解析+性能实测


1.摘要

本文提出了一种非线性混沌哈里斯鹰优化算法(NCHHO),
NCHHO算法通过引入混沌映射和非线性控制参数来提升HHO的优化性能。混沌映射的使用主要是为了增强算法的探索性,而非线性控制参数则帮助调整探索性与开发性之间的平衡。

2.改进策略

混沌映射

常见的混沌映射:


混沌映射增强了算法在探索搜索空间时的能力,而非线性控制参数则用于调节探索和开发阶段,从而提高了HHO的整体性能。
x i ( t + 1 ) = { X r a n d ( t ) − c m 1 ∣ X r a n d ( t ) − 2 c m 2 X i ( t ) ∣ q ≥ 0.5 ( X ∗ ( t ) − X m ( t ) ) − c m 3 ( l b + c m 4 ( u b − l b ) ) q ≤ 0.5 \begin{aligned} & x_i(t+1) \\ & = \begin{cases} X_{rand}(t)-cm_1\left|X_{rand}(t)-2cm_2X_i(t)\right| & q\geq0.5 \\ (X^*(t)-X_m(t))-cm_3\left(lb+cm_4\left(ub-lb\right)\right) & q\leq0.5 & & \end{cases} \end{aligned} xi(t+1)={Xrand(t)cm1Xrand(t)2cm2Xi(t)(X(t)Xm(t))cm3(lb+cm4(ublb))q0.5q0.5

非线性控制参数:
c = 2 e − ( 8 t T ) 2 c=2e^{-\left(\frac{8t}{T}\right)^2} c=2e(T8t)2

流程图

伪代码

3.结果展示



4.参考文献

[1] Dehkordi A A, Sadiq A S, Mirjalili S, et al. Nonlinear-based chaotic harris hawks optimizer: algorithm and internet of vehicles application[J]. Applied Soft Computing, 2021, 109: 107574.

5.代码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值