1.摘要
本文提出了一种非线性混沌哈里斯鹰优化算法(NCHHO),
NCHHO算法通过引入混沌映射和非线性控制参数来提升HHO的优化性能。混沌映射的使用主要是为了增强算法的探索性,而非线性控制参数则帮助调整探索性与开发性之间的平衡。
2.改进策略
混沌映射
常见的混沌映射:
混沌映射增强了算法在探索搜索空间时的能力,而非线性控制参数则用于调节探索和开发阶段,从而提高了HHO的整体性能。
x
i
(
t
+
1
)
=
{
X
r
a
n
d
(
t
)
−
c
m
1
∣
X
r
a
n
d
(
t
)
−
2
c
m
2
X
i
(
t
)
∣
q
≥
0.5
(
X
∗
(
t
)
−
X
m
(
t
)
)
−
c
m
3
(
l
b
+
c
m
4
(
u
b
−
l
b
)
)
q
≤
0.5
\begin{aligned} & x_i(t+1) \\ & = \begin{cases} X_{rand}(t)-cm_1\left|X_{rand}(t)-2cm_2X_i(t)\right| & q\geq0.5 \\ (X^*(t)-X_m(t))-cm_3\left(lb+cm_4\left(ub-lb\right)\right) & q\leq0.5 & & \end{cases} \end{aligned}
xi(t+1)={Xrand(t)−cm1∣Xrand(t)−2cm2Xi(t)∣(X∗(t)−Xm(t))−cm3(lb+cm4(ub−lb))q≥0.5q≤0.5
非线性控制参数:
c
=
2
e
−
(
8
t
T
)
2
c=2e^{-\left(\frac{8t}{T}\right)^2}
c=2e−(T8t)2
流程图
伪代码
3.结果展示
4.参考文献
[1] Dehkordi A A, Sadiq A S, Mirjalili S, et al. Nonlinear-based chaotic harris hawks optimizer: algorithm and internet of vehicles application[J]. Applied Soft Computing, 2021, 109: 107574.