1.摘要
本文提出了一种改进算术优化算法(LMRAOA)用于求解数值和工程优化问题,LMRAOA算法采用多领导者游动搜索策略(MLWAS)提升全局搜索能力,增强探索性;随机高速跳跃策略(RHSJ)加强局部搜索效率,提高开发能力;自适应透镜对立学习策略结合动态参数调整,有效避免陷入局部最优。
2.算术优化算法AOA原理
3.改进策略
多领导者游动搜索策略(MLWAS)
为了提升算法的全局搜索能力,本文提出了多领导者游动搜索策略(MLWAS)。在全局搜索过程中,从当前全局位置最优的五个个体中随机选取两个作为领导者,指派其在全局邻域内进一步搜索,从而引导整个种群朝向最优解逼近。
X
L
M
L
S
(
t
+
1
)
=
X
b
e
s
t
+
R
i
×
F
i
×
(
X
b
r
−
X
r
1
+
X
c
r
−
X
r
2
)
X_{LMLS}(t+1)=X_{best}+R_i\times F_i\times \begin{pmatrix} X_{br}-X_{r1}+X_{cr}-X_{r2} \end{pmatrix}
XLMLS(t+1)=Xbest+Ri×Fi×(Xbr−Xr1+Xcr−Xr2)
F
i
=
δ
−
i
×
(
μ
N
i
)
F_i=\delta-i\times(\frac{\mu}{N_i})
Fi=δ−i×(Niμ)
其中,
X
b
r
,
X
c
r
X_{br},X_{cr}
Xbr,Xcr是在5个最优位置的搜索个体中随机选择,
X
r
1
,
X
r
2
X_{r1},X_{r2}
Xr1,Xr2种群随机选择个体。
随机高速跳跃策略(RHSJ)
为了提高开发能力,引入了随机高速跳跃策略。在当前邻域内,该策略随机选择新的位置,搜索个体执行高速搜索,该策略在一定程度上避免了搜索不够彻底、陷入局部最优的现象。
X
R
H
S
J
(
t
+
1
)
=
X
i
+
R
i
×
F
i
×
(
X
r
1
−
X
r
2
)
×
L
F
(
D
)
X_{RHSJ}(t+1)=X_i+R_i\times F_i\times(X_{r1}-X_{r2})\times LF(D)
XRHSJ(t+1)=Xi+Ri×Fi×(Xr1−Xr2)×LF(D)
自适应透镜对立学习策略(LOBL)
传统对立学习策略通过引入候选解的对立值来增强搜索多样性,但在应对动态变化时存在局限。本文提出了一种自适应透镜对立学习策略,以提升算法在动态环境下的适应性与全局搜索能力。
X
L
O
B
L
(
t
+
1
)
=
m
i
n
(
X
i
)
+
m
a
x
(
X
i
)
2
+
m
i
n
(
X
i
)
+
m
a
x
(
X
i
)
2
×
k
−
X
i
k
i
f
(
n
e
w
f
i
t
)
≥
(
o
l
d
f
i
t
)
\begin{gathered} X_{LOBL}(t+1)=\frac{min(X_{i})+max(X_{i})}{2}+\frac{min(X_{i})+max(X_{i})}{2\times k} \\ -\frac{X_{i}}{k}if(newfit)\geq(oldfit) \end{gathered}
XLOBL(t+1)=2min(Xi)+max(Xi)+2×kmin(Xi)+max(Xi)−kXiif(newfit)≥(oldfit)
k
=
u
m
a
x
−
(
u
m
a
x
−
u
m
i
n
)
×
t
T
k=u_{max}-(u_{max}-u_{min})\times\frac{t}{T}
k=umax−(umax−umin)×Tt
流程图
伪代码
4.结果展示
PS:作者开源了代码,测试结果不如论文结果
5.参考文献
[1] Zhang Y J, Wang Y F, Yan Y X, et al. LMRAOA: An improved arithmetic optimization algorithm with multi-leader and high-speed jumping based on opposition-based learning solving engineering and numerical problems[J]. Alexandria Engineering Journal, 2022, 61(12): 12367-12403.