2022年AEF SCI2区:改进算术优化算法LMRAOA,深度解析+性能实测


1.摘要

本文提出了一种改进算术优化算法(LMRAOA)用于求解数值和工程优化问题,LMRAOA算法采用多领导者游动搜索策略(MLWAS)提升全局搜索能力,增强探索性;随机高速跳跃策略(RHSJ)加强局部搜索效率,提高开发能力;自适应透镜对立学习策略结合动态参数调整,有效避免陷入局部最优。

2.算术优化算法AOA原理

【智能算法】算术优化算法(AOA)原理及实现

3.改进策略

多领导者游动搜索策略(MLWAS)

为了提升算法的全局搜索能力,本文提出了多领导者游动搜索策略(MLWAS)。在全局搜索过程中,从当前全局位置最优的五个个体中随机选取两个作为领导者,指派其在全局邻域内进一步搜索,从而引导整个种群朝向最优解逼近。
X L M L S ( t + 1 ) = X b e s t + R i × F i × ( X b r − X r 1 + X c r − X r 2 ) X_{LMLS}(t+1)=X_{best}+R_i\times F_i\times \begin{pmatrix} X_{br}-X_{r1}+X_{cr}-X_{r2} \end{pmatrix} XLMLS(t+1)=Xbest+Ri×Fi×(XbrXr1+XcrXr2)
F i = δ − i × ( μ N i ) F_i=\delta-i\times(\frac{\mu}{N_i}) Fi=δi×(Niμ)
其中, X b r , X c r X_{br},X_{cr} Xbr,Xcr是在5个最优位置的搜索个体中随机选择, X r 1 , X r 2 X_{r1},X_{r2} Xr1,Xr2种群随机选择个体。

随机高速跳跃策略(RHSJ)

为了提高开发能力,引入了随机高速跳跃策略。在当前邻域内,该策略随机选择新的位置,搜索个体执行高速搜索,该策略在一定程度上避免了搜索不够彻底、陷入局部最优的现象。
X R H S J ( t + 1 ) = X i + R i × F i × ( X r 1 − X r 2 ) × L F ( D ) X_{RHSJ}(t+1)=X_i+R_i\times F_i\times(X_{r1}-X_{r2})\times LF(D) XRHSJ(t+1)=Xi+Ri×Fi×(Xr1Xr2)×LF(D)

自适应透镜对立学习策略(LOBL)

传统对立学习策略通过引入候选解的对立值来增强搜索多样性,但在应对动态变化时存在局限。本文提出了一种自适应透镜对立学习策略,以提升算法在动态环境下的适应性与全局搜索能力。
X L O B L ( t + 1 ) = m i n ( X i ) + m a x ( X i ) 2 + m i n ( X i ) + m a x ( X i ) 2 × k − X i k i f ( n e w f i t ) ≥ ( o l d f i t ) \begin{gathered} X_{LOBL}(t+1)=\frac{min(X_{i})+max(X_{i})}{2}+\frac{min(X_{i})+max(X_{i})}{2\times k} \\ -\frac{X_{i}}{k}if(newfit)\geq(oldfit) \end{gathered} XLOBL(t+1)=2min(Xi)+max(Xi)+2×kmin(Xi)+max(Xi)kXiif(newfit)(oldfit)
k = u m a x − ( u m a x − u m i n ) × t T k=u_{max}-(u_{max}-u_{min})\times\frac{t}{T} k=umax(umaxumin)×Tt

流程图

伪代码

4.结果展示

PS:作者开源了代码,测试结果不如论文结果


5.参考文献

[1] Zhang Y J, Wang Y F, Yan Y X, et al. LMRAOA: An improved arithmetic optimization algorithm with multi-leader and high-speed jumping based on opposition-based learning solving engineering and numerical problems[J]. Alexandria Engineering Journal, 2022, 61(12): 12367-12403.

6.代码获取

7.读者交流

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值