最近在研究imu和相机的联合标定方法,根据网上查到的资料和github上的开源工具总结如下。
1、联合标定的工具Kalibr
https://github.com/ethz-asl/kalibr
wiki写的很全了,总结以下要点:
需要:
1、内参:尺度,轴偏差、非线性(应用到raw measurements)
2、陀螺仪和加速度计的噪声和随机游走偏差
3、标定图像,很成熟了,使用ros中的工具箱就行。
采集图像:
需要激活所以的轴,20Hz的相机,200Hz的IMU
避免震动,看到有说法使用人手不行,需要机械臂
如果您正在使用具有对称性的校准目标(棋盘,圆网格),则必须避免可能导致目标姿态估计中的翻转的运动。 推荐使用Aprilgrid来完全避免这个问题。
中文博客教程:
https://blog.csdn.net/wwchen61/article/details/78013962
https://www.2cto.com/kf/201709/682389.html
https://blog.csdn.net/Binbin_Sun/article/details/53791404提到:
当前标定的结果,主要基于以下两个方面判定:
* 真实的IMU坐标系和相机坐标系的转换,即相机和IMU的物理距离
* 标定结果的稳定性上
标定的结果一直无法令人满意:
可能的原因