青龙全尺寸通用人形机器人硬件平台设计方案 | OpenLoong 社区线下分享会

导语:本文深入剖析了青龙全尺寸通用人形机器人硬件平台的设计理念、流程及关键系统设计。全方位介绍了青龙硬件系统的设计内容,涵盖总体设计、构型设计、功能划分与设计、行走与驱动系统设计、操纵与作业系统设计、能源动力系统设计以及感知与控制系统设计等方面,各部分均详细阐述了设计的关键点与技术细节。此外,文章还对人形机器人直线关节技术进行了探讨,为相关技术研究与应用提供了有价值的参考。

(文末附有PDF下载链接哦~)

1、设计目标与流程

1.1  青龙全尺寸通用人形机器人硬件平台设计目标

有观点认为硬件平台决定产品的瓶颈,原因在于所有创新点、算法、软件都需依托硬件平台实现。若硬件平台无法支撑,再新颖的想法、再高端的控制算法也难以落地。比如汽车领域,拖拉机绝不可能实现百公里加速二点几秒及卓越的操控,其他产品同理。因此,在人形机器人这一新兴领域,硬件平台设计是至关重要的基础,它直接关系到产品能否成功落地及落地后的效果。

在青龙设计初期,首先要明确产品目标:要打造怎样的人形机器人?构建何种平台?具体实现哪些功能?以青龙为例,其旨在打造一款强对标人类的通用人形机器人平台,需实现以下功能:一是自适应环境,进行移动行走,如简单行走、避障等;二是能简单完成操作功能,像模仿人类学习抓取、折叠等;三是作为智能硬件平台载体,搭载AI等技术。

图片
通用人形机器人的产品目标

1.2 青龙闭环设计流程

在确定好设计目标后,将依据以下六个步骤开展青龙的闭环设计,这也是众多成功产品所遵循的主要设计流程。

一、需求分析。具体分析包括明确应用场景(如服务、工业、教育、研究等用途);需实现的性能目标(如自由度、步态速度、续航时间、负载能力、交互能力等)以及需适应的环境(如室内、室外、地面的情况等)。

二、概念设计。明确功能划分,确定机械结构(头部、躯干、四肢等)和关键模块(传感器、驱动系统、控制器等);并进行形态设计,初步确定机器人的外形,考虑尺寸、比例和外观设计等。此外,还需要对技术指标进行可行性分析,评估最初设定的目标是否可行。

三、硬件架构设计。涵盖详细的机械设计(包括关节选型、材料选型以及动力学、静力学分析等),驱动系统设计,传感器选型,控制系统设计以及电源系统设计,这一步主要是搭建和设计整体硬件架构。

四、虚拟仿真与验证。在虚拟环境下进行仿真验证,包括动力学仿真和控制算法仿真,并据此进行结构优化。

五、样机制造。搭建和装配原型样机,进行关键零件测试(如关键模组、单臂、单腿等)以及系统集成。

六、集成调试与优化。调试硬件模块,确保机械结构、驱动系统、传感器、控制器正常工作。测试底层控制程序、运动规划和交互算法。验证基本功能,如步态稳定性、运动灵活性、环境适应性。在实际任务场景中测试机器人表现,包括负载测试和连续运行稳定性。根据测试反馈调整结构设计和算法参数。改进模块化设计,提升维护性和扩展性。在保证性能的基础上优化生产成本,为批量生产做准备。

2、“青龙”硬件系统设计内容

2.1 青龙全尺寸通用人形机器人硬件系统总体设计

要打造高度对标人类的全尺寸机器人,需对人体各节点进行分析,深入研究人的运动方式、关节组成以及各关节的自由度情况,以此为后续整体结构设计提供理论支撑。

基于上述六步流程,青龙机器人的硬件总体设计构建了人-机融合仿生映射机器人总体设计体系,采用行为特征提取、机构-尺度综合、功能结构一体化设计等手段,实现了高动态、高承载、强仿生、全尺寸人形机器人研制。

图片

2.2 构型设计

根据上一步的分析,接下来进行机器人的构型设计。青龙机器人的初步设计标准为:身高1.82米,重量约80公斤,全身拥有43个自由度,配备5指灵巧手,实现了全身灵活力控与动作协调。具体到各部位,包括头部有2个自由度,即俯仰和侧摆,以对标人类;每条手臂有7个自由度;腰部有3个自由度;腿部(包括大腿和髋部)有4个自由度;每一个踝关节2个自由度;总体43个自由度。通过关节设计与自由度的优化,机器人能够实现多种复杂运动平衡控制,进而满足多种的场景需求。

下图展示了各自由度关节的运动范围设定。以腰部为例,我们设定其向后弯曲15°,向前弯曲45°。虽然人类腰部向前弯曲的角度通常大于45°,但考虑到结构设计的限制,确定了45°这一标准。这一标准既参考了人体的运动特性,又结合了实际机构的可行性和需求的考量。

图片

2.3 功能划分与设计

下一步是依据功能划分各个模块。人形机器人硬件系统较为复杂,主要包括感知头、胸腔、腰部、双臂和腿足等部分,分系统涵盖核心零部件、旋转关节、主控系统和灵巧手等。所以要对其进行功能划分,并据此分配相应人员,对各模块进行重点设计。

图片

2.4 行走与驱动系统设计

青龙机器人的行走系统是通过仿生力学设计,动力学仿真与多场景验证,优化了步态周期的稳定性,进而满足多种场景需求。以下以青龙人形机器人的下肢行走驱动设计为例,详细介绍其设计过程。

一、进行步态仿真分析,研究行走速度与时间的关系,以及各关节扭矩-时间关系,为后续设计提供理论依据。

二、参考人体下肢骨骼结构,并依据国标GB/T 10000-2023中国成年人人体尺寸进行尺寸比例划分和下肢关节自由度设计。例如,青龙机器人的下肢设计包括:臀部侧展执行器实现大腿侧展,大腿周转电机,大腿侧摆执行器,膝关节执行器(安装于大腿上,通过连杆结构实现),以及小腿上的两个踝关节电机(通过连杆结构实现)。在设计中,充分考虑人体的运动实现,如膝关节不仅可俯仰,还采用关节轴承设计实现左右侧向微调;脚踝具有两个自由度(俯仰和侧摆),还能实现倾斜的角度位置,以达到拟人的结构设计效果。

图片
下肢关节比例及自由度设计

三、完成整体结构设计细化后,对机器人进行行走动力学仿真,设定仿真的指标(如青龙的设计速度为8Km/h),仿真不同速度下的关节自由度需求是否满足,连杆合理性以及关节电机的扭矩、转速、功率需求,进一步确认设计的可行性。同时,对结构进行强度校核,包括前倾倒碰撞仿真分析0.5米跳跃仿真分析,以及重点结构件的静力学仿真,以确保结构合理性。通过迭代优化,对不合理部分进行改进,减轻重量或加强结构,并在控制系统中进行最终确认。

图片
行走动力学仿真

图片
前倾倒碰撞仿真

图片
0.5m跳跃仿真

图片
控制系统仿真

四、仿真数据为关节模组设计提供了理论依据。青龙机器人大腿关节模组采用4种共12个关节,主要设计为轴向磁通电机搭配低减速比行星减速器,这种设计使体积小巧且能输出高扭矩和高转速。其中腿部前摆和膝关节扭矩最大,关节最大扭矩达396N·m,峰值扭矩密度200N·m/kg,采用驱传感控一体化高爆发关节模组(包含了电机、减速器、驱动器还有编码器),具备高密度、高精度、高速度和高刚度的特点。

图片

五、进行集成与验证测试,通过测试结果验证结构合理性,并考虑设计的可制造性、可维护性及成本等因素进行迭代优化,最终形成可用于量产的青龙设计。

2.5 操纵与作业系统设计

以上是腿足系统的设计过程,下面简要介绍青龙机器人的上肢操作系统设计。青龙的上肢是一个7自由度的机械臂,工作半径超600mm,整臂重量仅5.6公斤,实现了轻量化设计,尺寸和自由度均对标人体。机械臂末端可搭载5指灵巧手,每只手拥有6个主动自由度,大拇指关节有2个自由度,其余关节各1个自由度,共19个关节,重量550g。指尖和手掌配备了多阵列触觉传感器,抓取时可通过算法实时感知抓取力度。

颈部采用轴向磁通电机搭配低减速比行星减速器(QDD)设计,最大扭矩26Nm。上肢则采用高功率密度电机搭配高精度谐波减速器(SEA)设计,这是手臂关节的常见设计构型。腰部同样采用高功率密度电机搭配高精度谐波减速器(SEA)设计,腰部侧摆/俯仰扭矩可达315Nm。

图片

图片

2.6 能源动力系统设计

能源动力系统设计方面,选用了三元锂电池。众所周知,三元锂电池相较于磷酸铁锂电池,在能量密度上更具优势。鉴于人形机器人需外出行走作业,对轻量化有较高要求,我们最终确定采用三元锂电池方案。该电池最大容量为30Ah,能够满足续航两小时的设计需求,最大放电电流可达120A。同时,还将配备相应的电源管理系统和供配电系统

2.7 感知与控制系统设计

在控制与感知模块方面,控制系统采用了多主站实时同步高速EC总线系统,依据功能属性进行模块化管理,上肢作业和下肢作业独立运行。此外,实施多主站高速实时通信机制,确保各节点稳定通信。并通过智能任务调度及多核架构实时调度,充分挖掘硬件潜力,可支持33个从站实时同步控制。

感知模块分为两部分:感知头和胸部。胸部配备双目相机与激光雷达,双目相机用于视觉导航,激光雷达负责三维环境构建。感知头则包含视觉模块、语音模块和LED显示屏三个模块。视觉模块具备高测量精度和大探测角度,内置IMU传感器,可直接运行视觉定位算法,用于FPV图像采集,实现作业场景下目标识别和桌面深度点云构建,为自主抓取、目标位姿估计、行人动作识别等提供数据支持。

图片
青龙机器人感知模块

青龙机器人硬件平台最终设计实现的指标是,身高1.88米,体重95公斤。设计初期目标最大速度为8公里/小时,经测试,实际速度可达10公里/小时。还进行了手臂协同下蹲动作的测试,下面相关视频可展示测试情况。

图片
青龙跑步测试

图片
手臂协同下蹲动作

3、人形机器人硬件技术探讨

3.1 滚柱丝杠和滚珠丝杠的优劣势对比

电机+滚柱丝杠

优势:高负载能力、耐冲击

劣势:制造难度大、成本高

未来应用趋势:需要高负载和冲击的位置,如腿部、腰部关节,和大负载机器人

电机+滚珠丝杠

优势:低摩擦效率更高、制造工艺成熟、成本低

劣势:负载能力偏低、耐冲击能力差

未来应用趋势:小负载位置,如手臂、手腕关节,或低负载机器人

图片
滚柱丝杠

图片
滚珠丝杠

3.2 直线关节的优劣势分析

相对旋转关节,直线关节在性能、成本、可制造性/可维护性、应用场景等方面的优劣势如下:

优点缺点
性能

1.高精度直线运动,刚度好;2.耐冲击能力强,更稳定;3.能量效率高;4.高负载能力;5.空间利用率高;6.末端加力矩传感器,可以直接检测螺杆的负载,实现更精确力控;7.腿部使用直线关节可以将质心向上移动,手臂使用直线关节可以将质心向内移动,一方面提升提高整机质心,另一方面减轻四肢的运动惯量,从而提升整机稳定性、提升整机的运控表现

1.速度低

应用场景

1.广泛应用于需要直线运动的场景,如机器人手臂、腿部。旋转角度不大,高负载位置,如双腿和双臂。2.在精密装配、物料搬运等任务中,直线关节的高精度和高负载能力得到了充分发挥;

1.自由度运动范围要求不高的部位;2.高扭矩关节处;

成本/

1.成本偏高,包含丝杠等复杂传动装置,加工工艺复杂

可制造性
可维护性
/

1.制造工艺不成熟,制造成本高;2.旋转关节主要为电机和减速器,工艺相对成熟而且维护简单。

线下分享会的最后技术老师与观众进行了热烈的讨论,开源社区为大家提供了一个开放交流的平台,共同探讨硬件平台设计的难点与创新点。最后希望大家加入 OpenLoong 开源社区,关注 OpenLoong 项目,期待更多开发者加入硬件开发平台,进行后续交流和技术共享。

1、点击链接下载演讲PDF 青龙全尺寸通用人形机器人硬件平台设计 - 硬件设计 开发者论坛 - OpenLoong

2演讲视频请访问OpenLoong 开源社区Bilibili视频账号:OpenLoong开源社区的个人空间-OpenLoong开源社区个人主页-哔哩哔哩视频

OpenLoong开源社区介绍

“OpenLoong”是一个全球领先的综合性人形机器人开源社区。社区秉持着技术驱动和开放透明的价值观,致力于汇聚全球开发者,共同推动人形机器人产业的发展,为全球人形机器人产业赋能。
我们的使命是通过在机器人本体技术、平台软件、具身智能、具身数据集以及上层应用等多个方面做出重大贡献,从而推动整个产业的进步。

注册成为 OpenLoong 开源社区的一员,与机器人研究者和爱好者共同开启人形机器人探索之旅!

注册地址:OpenLoong

针对青龙人形机器人的动力学控制算法实现方法,虽然具体到“青龙”品牌的细节未直接提及,但从行业内的技术发展来看,可以基于已知的人形机器人动力学控制原理来推断可能采用的技术路径。 ### 青龙人形机器人动力学控制概述 人形机器人要实现在不同环境下的稳定运动,依赖于精确的动力学建模与高效的控制系统设计。通常情况下,这类系统的开发会涉及到以下几个方面: #### 1. 建立精准的物理模型 为了使机器人能够模仿人类的动作模式并保持平衡状态,必须建立一个详细的机械结构和动态特性描述。这一步骤对于任何品牌的人形机器人都是至关重要的基础工作[^1]。 #### 2. 控制器的设计与优化 控制器负责接收来自传感器的数据输入,并据此调整电机的位置、速度以及力矩输出,从而确保整个身体姿态符合预期目标。现代先进的人形机器人往往会集成多种类型的反馈机制,比如位置传感、加速度计、陀螺仪等设备的信息融合处理,以提高响应精度和鲁棒性能[^2]。 #### 3. 多模态感知能力的应用 通过引入视觉识别、语音交互等多种感官渠道,增强机器人对外界变化的理解能力和适应范围。特别是当面对复杂的非结构性任务时,这些额外的感觉器官可以帮助更好地规划行动路线和支持决策制定过程[^3]。 ```python import numpy as np from scipy.integrate import odeint def dynamics_model(state, t, params): """ 定义动力学方程组用于模拟关节角度θ及其角速度ω随时间的变化规律 参数: state (array): 当前的状态向量 [theta, omega] t : 时间变量 params(dict): 包含质量m、长度l等相关参数字典 返回值: dstate_dt(array): 下一时刻的状态增量[dtheta/dt, domega/dt] """ theta, omega = state m, l, g = params['mass'], params['length'], params['gravity'] # 计算二阶导数d²θ/dt²作为新的角速度更新依据 alpha = (-g / l * np.sin(theta)) - (0.1*omega) # 考虑阻尼效应简化版牛顿第二定律表达式 return [omega, alpha] # 初始化条件设定 initial_state = [np.pi/4., 0.] time_points = np.linspace(0, 10, num=50) # 物理属性定义 params = {'mass': 1.0, 'length': 0.5, 'gravity': 9.8} # 数值积分求解微分方程获得轨迹数据 solution = odeint(dynamics_model, initial_state, time_points, args=(params,)) ``` 此代码片段展示了如何构建简单的单摆系统仿真框架,实际应用中的人形机器人将会更加复杂得多,涉及多个自由度联合作业的情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值