前言:人形机器人的运动控制系统决定了它的行动能力和反应速度,是实现其自主性、灵活性和智能化的关键。目前人形机器人控制方案包括传统控制、优化控制、仿生控制和基于学习的控制方法。随着科技的发展,像MPC和WBC这样的先进控制策略在人形机器人运动控制领域的应用日益广泛,提升了机器人的功能表现。本文将带您一探人形机器人运动控制的奥秘,并分析这些技术如何通过开源社区促进整个行业的发展。
在2024年12月20日至21日举办的开放原子开发者大会期间,国家地方共建人形机器人创新中心的运动控制系统专家马老师在人形机器人分论坛上发表了题为《从算法到实践:基于 MPC 与 WBC 的人形机器人运动控制的实现》的主题演讲,概述了人形机器人运动控制技术的发展,介绍了MPC与WBC算法框架,并对 OpenLoong 动力学控制开源仓库的实践经验进行分享。
下面是对马老师演讲的整理:
马老师的演讲从以下几个方面展开,第一部分回顾了人形机器人运动控制技术发展历程和现状,第二部分介绍了基于 MPC 与 WBC 的运动控制算法框架,第三部分分享了 OpenLoong 动力学控制开源仓库,最后进行了总结和展望。下文整理了马老师在演讲过程中关于这几部分的思考。
1、人形机器人运动控制技术发展现状
2022年开始,国家对人形机器人领域的投入逐渐加大,也极大的促进了人形机器人领域的技术发展。从上个世纪人形机器人的技术研究开始,发展到目前,它的主流控制方向主要是分为两个,基于模型的传统方法控制方案和基于学习的运动控制方案。
第一个传统方法控制方案,从1990年到2020年,以日本和美国为代表,传统控制方案推动了人形机器人从静态平衡到动态平衡的快速发展,实现了从基本行走向跑酷等高动态动作的转变。这一时期主