2024 开放原子开发者大会人形机器人分论坛 | 从算法到实践:基于MPC与WBC的人形机器人运动控制的实现(上)

前言:人形机器人的运动控制系统决定了它的行动能力和反应速度,是实现其自主性、灵活性和智能化的关键。目前人形机器人控制方案包括传统控制、优化控制、仿生控制和基于学习的控制方法。随着科技的发展,像MPC和WBC这样的先进控制策略在人形机器人运动控制领域的应用日益广泛,提升了机器人的功能表现。本文将带您一探人形机器人运动控制的奥秘,并分析这些技术如何通过开源社区促进整个行业的发展。

在2024年12月20日至21日举办的开放原子开发者大会期间,国家地方共建人形机器人创新中心的运动控制系统专家马老师人形机器人分论坛上发表了题为《从算法到实践:基于 MPC 与 WBC 的人形机器人运动控制的实现》的主题演讲,概述了人形机器人运动控制技术的发展,介绍了MPC与WBC算法框架,并对 OpenLoong 动力学控制开源仓库的实践经验进行分享。

下面是对马老师演讲的整理:

马老师的演讲从以下几个方面展开,第一部分回顾了人形机器人运动控制技术发展历程和现状,第二部分介绍了基于 MPC 与 WBC 的运动控制算法框架,第三部分分享了 OpenLoong 动力学控制开源仓库,最后进行了总结和展望。下文整理了马老师在演讲过程中关于这几部分的思考。

1、人形机器人运动控制技术发展现状

2022年开始,国家对人形机器人领域的投入逐渐加大,也极大的促进了人形机器人领域的技术发展。从上个世纪人形机器人的技术研究开始,发展到目前,它的主流控制方向主要是分为两个,基于模型的传统方法控制方案和基于学习的运动控制方案。

第一个传统方法控制方案,从1990年到2020年,以日本和美国为代表,传统控制方案推动了人形机器人从静态平衡到动态平衡的快速发展,实现了从基本行走向跑酷等高动态动作的转变。这一时期主

### 人形机器人中的WBC算法 #### WBC算法简介 全身体动力学控制器(Whole Body Control, WBC)是一种用于多自由度复杂系统的高级控制方法,特别适用于像人形机器人这样拥有多个关节和接触点的系统。该类算法能够协调处理来自不同任务优先级的任务需求,在保持稳定性和高效执行动作的同时优化资源分配[^1]。 #### 工作原理 WBC通过构建一个多目标优化问题来解决复杂的运动规划挑战。具体来说: - **状态估计**:实时获取并融合传感器数据,包括但不限于IMU、力矩传感器以及视觉输入等,形成对外部环境及自身姿态的认知。 - **任务定义**:设定一系列期望达成的目标函数,这些目标可以涉及末端效应器的位置跟踪精度、重心位置维持范围等多个方面。 - **约束条件设置**:考虑物理极限如关节角度限位、驱动力矩上限等因素作为硬性限制加入求解过程之中。 - **优化求解**:采用二次规划(Quadratic Programming, QP)或其他适用的方法寻找满足上述所有要求的最佳解决方案集,并据此调整各伺服电机的动作指令以驱动实际硬件完成指定操作[^2]。 #### 实现流程 以下是利用Python伪代码展示的一个简化版WBC实现框架: ```python import numpy as np from scipy.optimize import minimize def wbc_controller(state_estimation, task_descriptions): """ Whole body controller implementation. Parameters: state_estimation (dict): Current robot states and sensor readings. task_descriptions (list of dict): Desired tasks with their priorities. Returns: joint_torques (np.ndarray): Optimal torques to apply on each joint. """ # Define objective function based on given tasks def cost_function(torque_vector): total_cost = 0.0 for task in task_descriptions: error = compute_task_error(task['target'], current_state) weight_matrix = get_weighting_matrix(task['priority']) total_cost += np.dot(error.T @ weight_matrix, error) return total_cost initial_guess = ... # Initial guess for the optimization problem bounds = [...] # Joint torque limits defined by hardware specs constraints = (...) # Physical limitations such as friction cones or contact forces result = minimize(cost_function, initial_guess, method='SLSQP', jac=True, options={'disp': False}, bounds=bounds, constraints=constraints) optimal_joint_torques = result.x return optimal_joint_torques ``` 此段代码仅提供了一个概念性的指导思路,真实应用场景下的实现会更加复杂且依赖具体的平台特性开发工具链的支持[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值