数学分析(十四)-幂级数2-函数的幂级数展开2-初等函数的幂级数/泰勒展开式3:sinx【麦克劳林级数:sinx=x-x³/3!+x⁵/5+...+(-1)ⁿ⁺¹x²ⁿ⁻¹/(2n-1)!+...】

博客探讨了函数sinx的麦克劳林级数展开,通过拉格朗日型余项分析证明了sinx在(-∞, +∞)上可展开为无穷级数,展示了解析展开的过程,展示了sinx的级数形式x - x³/3! + x⁵/5! - ..." 107413975,7472503,Python Seaborn教程:数据可视化艺术,"['Python', '数据可视化', 'Seaborn', '统计图形']
摘要由CSDN通过智能技术生成

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) , ( 1 ) \begin{aligned} f(x)=f\left(x_{0}\right)+ & f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2 !}\left(x-x_{0}\right)^{2}+\cdots+ \frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n}+R_{n}(x), \quad\quad(1) \end{aligned} f(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2++n!f(n)(x0)(xx0)n+Rn(x),(1)

这里 R n ( x ) R_{n}(x) Rn(x)拉格朗日型余项

R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 , ( 2 ) R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1) !}\left(x-x_{0}\right)^{n+1}, \quad\quad(2) Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1,(2)

f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + ⋯ ( 3 ) \begin{array}{c} f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cfrac{f^{\prime \prime}\left(x_{0}\right)}{2 !}\left(x-x_{0}\right)^{2}+\cdots+ \cfrac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n}+\cdots \quad\quad(3) \end{array} f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2++n!f(n)(x0)(xx0)n+(3)


在实际应用上,主要讨论函数在 x 0 = 0 x_{0}=0 x0=0 处的展开式, 这时 (3) 式可以写作

f ( 0 ) + f ′ ( 0 ) 1 ! x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + ⋯   , f(0)+\frac{f^{\prime}(0)}{1 !} x+\frac{f^{\prime \prime}(0)}{2 !} x^{2}+\cdots+\frac{f^{(n)}(0)}{n !} x^{n}+\cdots, f(0)+1!f(0)x+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值