海涅定理

海涅定理(函数极限和数列极限的转化):

lim ⁡ x → a f ( x ) = L ⇔ ∀ x n → a ( x n ≠ a ) , lim ⁡ n → ∞ f ( x n ) = L \lim_{ x\rightarrow a } f(x)=L \Leftrightarrow \forall x_n \rightarrow a(x_n \neq a), \lim_{n \rightarrow \infty}f(x_n)=L xalimf(x)=Lxna(xn=a),nlimf(xn)=L

应用:数列极限与函数极限

海涅定理与极限求值

解:海涅定理n=\frac{1}{x}
f ′ ( a ) 存 在 , f ( a ) > 0 , I 2 = lim ⁡ n → ∞ ( f ( a + 1 n ) f ( a − 1 n ) ) n , n 为 自 然 数 I 2 = lim ⁡ n → ∞ e n ∗ l n ( f ( a + 1 n ) f ( a − 1 n ) ) 初 等 函 数 , 极 限 直 接 放 到 内 层 lim ⁡ n → ∞ n ∗ l n ( f ( a + 1 n ) f ( a − 1 n ) ) = lim ⁡ x → 0 + l n f ( a + x ) f ( a − x ) x 洛 必 达 法 则 = lim ⁡ x → 0 + ( f ′ ( a + x ) f ( a + x ) + f ′ ( a − x ) f ( a − x ) ) 导 数 存 在 , 左 右 导 数 存 在 且 相 等 和 导 数 的 左 右 极 限 值 是 完 全 不 同 的 概 念 ( 右 导 数 不 等 于 导 数 的 右 极 限 对 吗 , 是 因 为 导 函 数 不 一 定 连 续 。 同 样 也 有 导 函 数 极 限 存 在 但 单 侧 极 限 不 存 在 的 例 子 。 ) lim ⁡ x → 0 + f ′ ( a − x ) 无 法 计 算 f'(a)存在,f(a)>0,I_2=\lim_{n\rightarrow \infty} ( \frac{f(a+\frac{1}{n})}{f(a-\frac{1}{n})})^n,n为自然数\\ I_2=\lim_{n\rightarrow \infty} e^{n*ln ( \frac{f(a+\frac{1}{n})}{f(a-\frac{1}{n})}) } \\ 初等函数,极限直接放到内层\\ \lim_{n\rightarrow \infty} n*ln ( \frac{f(a+\frac{1}{n})}{f(a-\frac{1}{n})})\\ =\lim_{x\rightarrow 0^+} \frac{ln \frac{f(a+x)}{f(a-x)} }{x}\\ 洛必达法则\\ =\lim_{x\rightarrow 0^+} (\frac{f'(a+x)}{f(a+x)}+\frac{f'(a-x)}{f(a-x)})\\ 导数存在,左右导数存在且相等和导数的左右极限值是完全不同的概念\\ (右导数不等于导数的右极限对吗,是因为导函数不一定连续。\\ 同样也有导函数极限存在但单侧极限不存在的例子。)\\ \lim_{x\rightarrow 0^+} f'(a-x) 无法计算 \\ f(a)f(a)>0I2=nlim(f(an1)f(a+n1))n,nI2=nlimenln(f(an1)f(a+n1)),nlimnln(f(an1)f(a+n1))=x0+limxlnf(ax)f(a+x)=x0+lim(f(a+x)f(a+x)+f(ax)f(ax))x0+limf(ax)

现 在 尝 试 使 用 重 要 极 限 则 : I 2 = lim ⁡ n → ∞ ( f ( a + 1 n ) f ( a − 1 n ) ) n = lim ⁡ n → ∞ ( 1 + f ( a + 1 n ) f ( a − 1 n ) − 1 ) 1 f ( a + 1 n ) f ( a − 1 n ) − 1 ( f ( a + 1 n ) f ( a − 1 n ) − 1 ) ∗ n 计 算 lim ⁡ n → ∞ ( f ( a + 1 n ) f ( a − 1 n ) − 1 ) ∗ n = = lim ⁡ x → 0 + ( f ( a + x ) f ( a − x ) − 1 ) x = lim ⁡ x → 0 + f ( a + x ) − f ( a − x ) f ( a − x ) x 凑 导 数 的 定 义 2 f ′ ( a ) f ( a ) 现在尝试使用重要极限\\ 则:I_2=\lim_{n\rightarrow \infty} ( \frac{f(a+\frac{1}{n})}{f(a-\frac{1}{n})})^n\\ =\lim_{n\rightarrow \infty} (1+ \frac{f(a+\frac{1}{n})}{f(a-\frac{1}{n})}-1)^{ \frac{1}{\frac{f(a+\frac{1}{n})}{f(a-\frac{1}{n})}-1 } {(\frac{f(a+\frac{1}{n})}{f(a-\frac{1}{n})}-1)}*n}\\ 计算\lim_{n\rightarrow \infty}{(\frac{f(a+\frac{1}{n})}{f(a-\frac{1}{n})}-1)}*n==\lim_{x\rightarrow 0^+} \frac{(\frac{f(a+x)}{f(a-x)}-1)}{x}=\lim_{x\rightarrow 0^+} \frac{ f(a+x)-{f(a-x)}}{f(a-x)x}\\ 凑导数的定义\frac{2f'(a)}{f(a)} 使I2=nlim(f(an1)f(a+n1))n=nlim(1+f(an1)f(a+n1)1)f(an1)f(a+n1)11(f(an1)f(a+n1)1)nnlim(f(an1)f(a+n1)1)n==x0+limx(f(ax)f(a+x)1)=x0+limf(ax)xf(a+x)f(ax)f(a)2f(a)

l n f ( a + x ) − l n f ( a ) + l n f ( a ) − l n f ( a − x ) 拉 格 朗 日 中 值 , 2 x ( l n f ( a ) ) ′ 但 是 f ( x ) 在 ( a , x ) 不 一 定 可 导 拉 个 朗 日 和 柯 西 一 样 , 并 且 还 慢 了 一 步 lnf(a+x)-lnf(a)+lnf(a)-lnf(a-x)拉格朗日中值,2x(lnf(a))'但是f(x)在(a,x)不一定可导\\ 拉个朗日和柯西一样,并且还慢了一步 lnfa+xlnfa+lnfalnfax2x(lnf(a))f(x)(a,x)西


I 2 = lim ⁡ n → ∞ n 2 ( a r c t a n π n − a r c t a n π n + 1 ) I_2=\lim_{n\rightarrow \infty} n^2(arctan \frac{\pi }{n} -arctan \frac{\pi}{n+1} ) I2=nlimn2(arctannπarctann+1π)

解1:拉格朗日中值定理
解2:海涅定理n=\frac{1}{x}
解 2 : 海 涅 定 理 n = 1 x I 2 = lim ⁡ n → ∞ n 2 ( a r c t a n π n − a r c t a n π n + 1 ) = lim ⁡ x → 0 + ( a r c t a n ( π x ) − a r c t a n π x x + 1 ) x 2 = lim ⁡ x → 0 + π x − π x x + 1 x 2 = π 解2:海涅定理n=\frac{1}{x}\\ I_2=\lim_{n\rightarrow \infty} n^2(arctan \frac{\pi }{n} -arctan \frac{\pi}{n+1} )\\ =\lim_{x\rightarrow 0^+} \frac{(arctan( \pi x )-arctan \frac{\pi x}{x+1} )}{x^2}\\ =\lim_{x\rightarrow 0^+} \frac{ \pi x - \frac{\pi x}{x+1} }{x^2}=\pi \\ 2n=x1I2=nlimn2(arctannπarctann+1π)=x0+limx2(arctan(πx)arctanx+1πx)=x0+limx2πxx+1πx=π

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值