海涅定理(函数极限和数列极限的转化):
lim x → a f ( x ) = L ⇔ ∀ x n → a ( x n ≠ a ) , lim n → ∞ f ( x n ) = L \lim_{ x\rightarrow a } f(x)=L \Leftrightarrow \forall x_n \rightarrow a(x_n \neq a), \lim_{n \rightarrow \infty}f(x_n)=L x→alimf(x)=L⇔∀xn→a(xn=a),n→∞limf(xn)=L
应用:数列极限与函数极限
海涅定理与极限求值
解:海涅定理n=\frac{1}{x}
f
′
(
a
)
存
在
,
f
(
a
)
>
0
,
I
2
=
lim
n
→
∞
(
f
(
a
+
1
n
)
f
(
a
−
1
n
)
)
n
,
n
为
自
然
数
I
2
=
lim
n
→
∞
e
n
∗
l
n
(
f
(
a
+
1
n
)
f
(
a
−
1
n
)
)
初
等
函
数
,
极
限
直
接
放
到
内
层
lim
n
→
∞
n
∗
l
n
(
f
(
a
+
1
n
)
f
(
a
−
1
n
)
)
=
lim
x
→
0
+
l
n
f
(
a
+
x
)
f
(
a
−
x
)
x
洛
必
达
法
则
=
lim
x
→
0
+
(
f
′
(
a
+
x
)
f
(
a
+
x
)
+
f
′
(
a
−
x
)
f
(
a
−
x
)
)
导
数
存
在
,
左
右
导
数
存
在
且
相
等
和
导
数
的
左
右
极
限
值
是
完
全
不
同
的
概
念
(
右
导
数
不
等
于
导
数
的
右
极
限
对
吗
,
是
因
为
导
函
数
不
一
定
连
续
。
同
样
也
有
导
函
数
极
限
存
在
但
单
侧
极
限
不
存
在
的
例
子
。
)
lim
x
→
0
+
f
′
(
a
−
x
)
无
法
计
算
f'(a)存在,f(a)>0,I_2=\lim_{n\rightarrow \infty} ( \frac{f(a+\frac{1}{n})}{f(a-\frac{1}{n})})^n,n为自然数\\ I_2=\lim_{n\rightarrow \infty} e^{n*ln ( \frac{f(a+\frac{1}{n})}{f(a-\frac{1}{n})}) } \\ 初等函数,极限直接放到内层\\ \lim_{n\rightarrow \infty} n*ln ( \frac{f(a+\frac{1}{n})}{f(a-\frac{1}{n})})\\ =\lim_{x\rightarrow 0^+} \frac{ln \frac{f(a+x)}{f(a-x)} }{x}\\ 洛必达法则\\ =\lim_{x\rightarrow 0^+} (\frac{f'(a+x)}{f(a+x)}+\frac{f'(a-x)}{f(a-x)})\\ 导数存在,左右导数存在且相等和导数的左右极限值是完全不同的概念\\ (右导数不等于导数的右极限对吗,是因为导函数不一定连续。\\ 同样也有导函数极限存在但单侧极限不存在的例子。)\\ \lim_{x\rightarrow 0^+} f'(a-x) 无法计算 \\
f′(a)存在,f(a)>0,I2=n→∞lim(f(a−n1)f(a+n1))n,n为自然数I2=n→∞limen∗ln(f(a−n1)f(a+n1))初等函数,极限直接放到内层n→∞limn∗ln(f(a−n1)f(a+n1))=x→0+limxlnf(a−x)f(a+x)洛必达法则=x→0+lim(f(a+x)f′(a+x)+f(a−x)f′(a−x))导数存在,左右导数存在且相等和导数的左右极限值是完全不同的概念(右导数不等于导数的右极限对吗,是因为导函数不一定连续。同样也有导函数极限存在但单侧极限不存在的例子。)x→0+limf′(a−x)无法计算
现 在 尝 试 使 用 重 要 极 限 则 : I 2 = lim n → ∞ ( f ( a + 1 n ) f ( a − 1 n ) ) n = lim n → ∞ ( 1 + f ( a + 1 n ) f ( a − 1 n ) − 1 ) 1 f ( a + 1 n ) f ( a − 1 n ) − 1 ( f ( a + 1 n ) f ( a − 1 n ) − 1 ) ∗ n 计 算 lim n → ∞ ( f ( a + 1 n ) f ( a − 1 n ) − 1 ) ∗ n = = lim x → 0 + ( f ( a + x ) f ( a − x ) − 1 ) x = lim x → 0 + f ( a + x ) − f ( a − x ) f ( a − x ) x 凑 导 数 的 定 义 2 f ′ ( a ) f ( a ) 现在尝试使用重要极限\\ 则:I_2=\lim_{n\rightarrow \infty} ( \frac{f(a+\frac{1}{n})}{f(a-\frac{1}{n})})^n\\ =\lim_{n\rightarrow \infty} (1+ \frac{f(a+\frac{1}{n})}{f(a-\frac{1}{n})}-1)^{ \frac{1}{\frac{f(a+\frac{1}{n})}{f(a-\frac{1}{n})}-1 } {(\frac{f(a+\frac{1}{n})}{f(a-\frac{1}{n})}-1)}*n}\\ 计算\lim_{n\rightarrow \infty}{(\frac{f(a+\frac{1}{n})}{f(a-\frac{1}{n})}-1)}*n==\lim_{x\rightarrow 0^+} \frac{(\frac{f(a+x)}{f(a-x)}-1)}{x}=\lim_{x\rightarrow 0^+} \frac{ f(a+x)-{f(a-x)}}{f(a-x)x}\\ 凑导数的定义\frac{2f'(a)}{f(a)} 现在尝试使用重要极限则:I2=n→∞lim(f(a−n1)f(a+n1))n=n→∞lim(1+f(a−n1)f(a+n1)−1)f(a−n1)f(a+n1)−11(f(a−n1)f(a+n1)−1)∗n计算n→∞lim(f(a−n1)f(a+n1)−1)∗n==x→0+limx(f(a−x)f(a+x)−1)=x→0+limf(a−x)xf(a+x)−f(a−x)凑导数的定义f(a)2f′(a)
l n f ( a + x ) − l n f ( a ) + l n f ( a ) − l n f ( a − x ) 拉 格 朗 日 中 值 , 2 x ( l n f ( a ) ) ′ 但 是 f ( x ) 在 ( a , x ) 不 一 定 可 导 拉 个 朗 日 和 柯 西 一 样 , 并 且 还 慢 了 一 步 lnf(a+x)-lnf(a)+lnf(a)-lnf(a-x)拉格朗日中值,2x(lnf(a))'但是f(x)在(a,x)不一定可导\\ 拉个朗日和柯西一样,并且还慢了一步 lnf(a+x)−lnf(a)+lnf(a)−lnf(a−x)拉格朗日中值,2x(lnf(a))′但是f(x)在(a,x)不一定可导拉个朗日和柯西一样,并且还慢了一步
I 2 = lim n → ∞ n 2 ( a r c t a n π n − a r c t a n π n + 1 ) I_2=\lim_{n\rightarrow \infty} n^2(arctan \frac{\pi }{n} -arctan \frac{\pi}{n+1} ) I2=n→∞limn2(arctannπ−arctann+1π)
解1:拉格朗日中值定理
解2:海涅定理n=\frac{1}{x}
解
2
:
海
涅
定
理
n
=
1
x
I
2
=
lim
n
→
∞
n
2
(
a
r
c
t
a
n
π
n
−
a
r
c
t
a
n
π
n
+
1
)
=
lim
x
→
0
+
(
a
r
c
t
a
n
(
π
x
)
−
a
r
c
t
a
n
π
x
x
+
1
)
x
2
=
lim
x
→
0
+
π
x
−
π
x
x
+
1
x
2
=
π
解2:海涅定理n=\frac{1}{x}\\ I_2=\lim_{n\rightarrow \infty} n^2(arctan \frac{\pi }{n} -arctan \frac{\pi}{n+1} )\\ =\lim_{x\rightarrow 0^+} \frac{(arctan( \pi x )-arctan \frac{\pi x}{x+1} )}{x^2}\\ =\lim_{x\rightarrow 0^+} \frac{ \pi x - \frac{\pi x}{x+1} }{x^2}=\pi \\
解2:海涅定理n=x1I2=n→∞limn2(arctannπ−arctann+1π)=x→0+limx2(arctan(πx)−arctanx+1πx)=x→0+limx2πx−x+1πx=π