ROS 基于yolo的本地视频识别

ros包创建

这里默认我们已经创建了工作空间
如果没有,我们需要执行以下几步(已经创建的可以跳过):

1、首先创建一个工作目录文件

mkdir -p ./catkin_ws/src

catkin_ws为工作空间
2、在工作区目录下执行执行

catkin_make

3、在src目录下建立包(如果已经创建的,可以直接从这一步开始):

catkin_create_pkg local_vedio_detect std_msgs rospy roscpp

其中local_vedio_detect为包名
创建包
以上三步参考链接ros创建包

话题模型

话题模型

创建vediopub.cpp

vediopub
在loca_vedio_detect下的src创建vediopub.cpp文件
下面是vediopub.cpp文件内容

#include<ros/ros.h>
#include<cv_bridge/cv_bridge.h>
#include<sensor_msgs/image_encodings.h>
#include<image_transport/image_transport.h>

#include<opencv2/opencv.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>

#include<stdio.h>

using namespace cv;
using namespace std;

int main(int argc, char** argv)
{
    // ROS节点初始化
    ros::init(argc, argv, "image_publisher");
    ros::NodeHandle n; 
    ros::Time time = ros::Time::now();
    ros::Rate loop_rate(5);
    
     // 定义节点句柄   
    image_transport::ImageTransport it(n);
    image_transport::Publisher pub = it.advertise("/camera/image_raw", 1);
    sensor_msgs::ImagePtr msg;
        
    // opencv准备读取视频
    cv::VideoCapture video;
    video.open("/home/winston/catkin_ws/src/local_vedio_detect/data/11.mp4");  

    if( !video.isOpened() )
    {
        ROS_INFO("Read Video failed!\n");
        return 0;
    }
    Mat frame;
    int count = 0;
    while(1)
    {
        video >> frame;
        if( frame.empty() )
            break;
        count++;
        
        msg = cv_bridge::CvImage(std_msgs::Header(), "bgr8", frame).toImageMsg();
        pub.publish(msg);
        
        ROS_INFO( "read the %dth frame successfully!", count );
        loop_rate.sleep();
        ros::spinOnce();
    }
    video.release();
    
    return 0;
}

注意,

     // 定义节点句柄   
    image_transport::ImageTransport it(n);
    image_transport::Publisher pub = it.advertise("/camera/image_raw", 1);
    sensor_msgs::ImagePtr msg;

这一部分中的 /camera/image_raw 要和roa.yaml的camera_reading中的topic一致
在这里插入图片描述

创建vediosub.cpp

在这里插入图片描述
以下是代码内容:

#include<ros/ros.h>
#include<cv_bridge/cv_bridge.h>
#include<sensor_msgs/image_encodings.h>
#include<image_transport/image_transport.h>

#include<opencv2/opencv.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>

#include<stdio.h>
#include<math.h>
#include<vector>


void imageCalllback(const sensor_msgs::ImageConstPtr& msg)
{
	ROS_INFO("Received \n");
	try{
        cv::imshow( "video", cv_bridge::toCvShare(msg, "bgr8")->image );
        cv::waitKey(30);
    }
    catch( cv_bridge::Exception& e )
    {
        ROS_ERROR( "Could not convert from '%s' to 'bgr8'.", msg->encoding.c_str() );
    }
}

int main(int argc, char** argv)
{
	ros::init(argc, argv, "image_listener");
	ros::NodeHandle n;
    cv::namedWindow("video");
    cv::startWindowThread();

    image_transport::ImageTransport it(n);
    image_transport::Subscriber sub = it.subscribe( "video_image", 1, imageCalllback );

	
	ros::spin();
    cv::destroyWindow("video");
	return 0;
}

CMakeList.txt的修改

CMakeList.txt在local_vedio_detect文件下,下图是是cmakelist的初始样子,蓝色的都是注释,我们要在这个的基础上进行一些修改
在这里插入图片描述
首先找到这一行
在这里插入图片描述
把这段代码替换选出来的内容

find_package(catkin REQUIRED COMPONENTS
  cv_bridge
  image_transport
  roscpp
  rospy
  sensor_msgs
  std_msgs
)
find_package(OpenCV REQUIRED)

然后找到这一行
在这里插入图片描述
修改为:

include_directories(include ${catkin_INCLUDE_DIRS})
include_directories(include ${OpenCV_INCLUDE_DIRS})
 
add_executable(vediopub src/vediopub.cpp)
target_link_libraries(vediopub ${catkin_LIBRARIES} ${OpenCV_LIBRARIES})
#add_dependencies(mytest opencvexam_gencpp)

add_executable(vediosub src/vediosub.cpp)
target_link_libraries(vediosub ${catkin_LIBRARIES} ${OpenCV_LIBRARIES})

进行catkin_make

在这里插入图片描述
在这里插入图片描述
不出以外的话,会编译成功

运行

最后就是运行了
首先需要到catkin_ws目录下,打开终端输入roscore

roscore

然后打开另一个终端
输入

rosrun local_vedio_detect vediopub

在这里插入图片描述
如果看到这样的结果,那代表运行成功了

调用darknet_ros

为了能够看到视频的检测结果,我们需要调用darnet_ros的内容
下图就是darknet_ros的文件
github原文链接
配置过程
在这里插入图片描述
在catkin_ws目录下打开终端,输入

roslaunch darknet_ros darknet_ros.launch

在这里插入图片描述
再打开一个终端

rosrun local_vedio_detect vediopub

在这里插入图片描述
最后就能得到上图的检测结果

有什么问题在下面留言哦,我看到了解答

参考博客:
ROS中订阅和发布视频中的图像消息

基于ROS(机器人操作系统)和YOLO(You Only Look Once)的采摘机器人技术路线如下: 首先,我们需要硬件设备,如机械臂和摄像头,以及运行ROS的计算设备(如嵌入式系统或计算机)。 其次,我们需要安装ROS并配置相应的软件包和驱动程序,以实现机器人和硬件设备之间的通信。 接下来,我们需要进行目标检测和识别YOLO是一个流行的实时目标检测算法,可以在图像或视频识别出不同类别的物体。我们可以使用YOLO的预训练模型,或者根据我们的需求自己在大型数据集上训练一个模型。 然后,我们将集成YOLO目标检测算法到ROS中。这可以通过使用ROS的图像处理库(如OpenCV)来实现。我们可以编写ROS节点,通过摄像头捕捉图像,并使用YOLO进行目标检测。 在目标检测完成后,我们需要让机器人执行采摘动作。这需要通过控制机械臂来实现。在ROS中,我们可以使用MoveIt等软件包来规划和控制机械臂的运动。 最后,我们可以添加其他的功能和模块,如路径规划、自主导航、人机交互等,以确保采摘机器人的高效和可靠性。 综上所述,采摘机器人的技术路线主要包括硬件设备的选择和配置、ROSYOLO的集成、目标检测和识别、机械臂控制等关键技术。这些技术的结合使得采摘机器人能够在农田或其他环境中自动检测和采摘目标物体,提高了农业生产的效率和质量。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值