【学习笔记】刚体角速度的唯一性问题

博客探讨了刚体控制技术中关于刚体动能计算的问题,特别是角速度的确定性。作者指出,无论选择哪个基点,刚体上任一点的角速度都是唯一的,这一结论在《工程力学教程》中有详细证明。文章引用教材截图并建议读者参考该书深入理解刚体角速度的唯一性定理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

  最近在学机器人控制技术,当计算刚体动能时有点懵,首先可以确定的是,刚体的动能等于质心处的平动动能(即 1 2 m v 2 \frac{1}{2}mv^2 21mv2),加上其余质点绕质心的转动动能(即 1 2 J ω 2 \frac{1}{2}J\omega ^2 21Jω2 。但是问题出在这个 ω \omega ω怎么取上面。

问题

  一根刚体细杆绕一点O以角速度 ω \omega ω旋转,在杆上面有两个点A和B,如下图所示。

哈哈哈
以O点为基点,可以知道A和B点的角速度都是 ω \omega ω,那如果以A点为基点呢,也就是站在A点看B点,角速度是多少呢?答案就是角速度仍然为 ω \omega ω,此即刚体角速度的唯一性

证明

  这个问题似乎网上不少博客,但其实个人更为推荐去看李海龙,梅凤翔编著的《工程力学教程》,在这本书的第4章 刚体运动学,开篇就是证明这个定理,他是首先从刚体的速度投影定理开始讲起,然后利用刚体上点的任意性来证明角速度的唯一性。
  下面是原教材的截图。
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

书籍链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

记录无知岁月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值