前言
最近在学机器人控制技术,当计算刚体动能时有点懵,首先可以确定的是,刚体的动能等于质心处的平动动能(即 1 2 m v 2 \frac{1}{2}mv^2 21mv2),加上其余质点绕质心的转动动能(即 1 2 J ω 2 \frac{1}{2}J\omega ^2 21Jω2) 。但是问题出在这个 ω \omega ω怎么取上面。
问题
一根刚体细杆绕一点O以角速度 ω \omega ω旋转,在杆上面有两个点A和B,如下图所示。
以O点为基点,可以知道A和B点的角速度都是
ω
\omega
ω,那如果以A点为基点呢,也就是站在A点看B点,角速度是多少呢?答案就是角速度仍然为
ω
\omega
ω,此即刚体角速度的唯一性。
证明
这个问题似乎网上不少博客,但其实个人更为推荐去看李海龙,梅凤翔编著的《工程力学教程》,在这本书的第4章 刚体运动学,开篇就是证明这个定理,他是首先从刚体的速度投影定理开始讲起,然后利用刚体上点的任意性来证明角速度的唯一性。
下面是原教材的截图。