ROS中的GPS RTK 坐标轨迹可视化

本文提供了一个ROS项目,用于通过修改launch文件中GPS RTK的ROS话题名称来实现坐标轨迹的可视化。用户需要将'/mti0/sensor/fix_navsat'替换为自己的GPS/RTK话题,然后执行catkin_make即可运行。项目代码可在提供的百度网盘链接中获取,提取码为1111。

完整项目代码放在文章最后的链接里面

launch文件中的rtk or gps 的ros话题名称需要修改成你ros话题名称;

        <remap from="/mti0/sensor/fix_navsat" to="/your/gps/rtk/topic" />
 

其他的就没有了,直接catkin_make 就可以运行了

将GPS轨迹,计算出每个gps坐标相对与第一个坐标的距离(m为单位),比较相邻两点的经纬度变化,得到了位移的方向,然后得到轨迹

launch文件中的rtk or gps 的ros话题名称需要修改成你ros话题名称;

        <remap from="/mti0/sensor/fix_navsat" to="/your/gps/rtk/topic" />
 

其他的就没有了,直接catkin_make 就可以运行了

launch文件中的rtk or gps 的ros话题名称需要修改成你ros话题名称;

其他的就没有了,直接catkin_make 就可以运行了

代码

### GPS轨迹ROS中的可视化 要在ROS中实现GPS轨迹可视化,通常可以通过多种方式完成。以下是几种常见的方法及其具体实现: #### 方法一:通过`rviz`插件显示GPS轨迹 `rviz`是一个强大的工具,用于实时查看传感器数据和其他消息类型的可视化效果。要将GPS轨迹显示到`rviz`中,可以按照以下步骤操作。 1. **转换GPS数据至`nav_msgs/Odometry`或`geometry_msgs/PoseStamped`格式** ROS中的`rviz`支持许多标准的消息类型,因此需要先将原始的`sensor_msgs/NavSatFix`数据转换成适合可视化的格式。例如,可以创建一个节点来订阅`/fix`话题并发布对应的路径点[^2]。 下面是一个简单的代码示例,展示如何将GPS数据转换为路径点: ```python import rospy from sensor_msgs.msg import NavSatFix from geometry_msgs.msg import PoseStamped, Point from tf.transformations import quaternion_from_euler class GPSToPathNode: def __init__(self): self.gps_sub = rospy.Subscriber("/fix", NavSatFix, self.gps_callback) self.path_pub = rospy.Publisher("/gps_path", PoseStamped, queue_size=10) def gps_callback(self, msg): pose_msg = PoseStamped() pose_msg.header.stamp = rospy.Time.now() pose_msg.header.frame_id = "map" # 假设已知经纬度与局部坐标的映射关系 latitude = msg.latitude longitude = msg.longitude # 转换逻辑 (需根据实际地图投影计算) point_x, point_y = convert_gps_to_local(latitude, longitude) # 自定义函数 pose_msg.pose.position.x = point_x pose_msg.pose.position.y = point_y pose_msg.pose.position.z = 0.0 quat = quaternion_from_euler(0, 0, 0) # 默认朝向 pose_msg.pose.orientation.x = quat[0] pose_msg.pose.orientation.y = quat[1] pose_msg.pose.orientation.z = quat[2] pose_msg.pose.orientation.w = quat[3] self.path_pub.publish(pose_msg) if __name__ == "__main__": rospy.init_node("gps_to_path_node") node = GPSToPathNode() rospy.spin() ``` 2. **配置`rviz`以显示路径** 在`rviz`中添加一个新的`PoseArray`或`Path`显示项,并设置其主题为上述发布的`/gps_path`话题即可。 --- #### 方法二:导出GPS轨迹至Google Earth 如果希望将GPS轨迹导出并在Google Earth中查看,则需要将GPS数据存储为`.kml`文件。此过程涉及读取`sensor_msgs/NavSatFix`数据并将它们写入KML格式文件。 下面是一段Python脚本,演示如何生成KML文件: ```python import rospy from sensor_msgs.msg import NavSatFix class GPSToKMLNode: def __init__(self): self.file_name = "/path/to/output.kml" with open(self.file_name, 'w') as f: f.write('<?xml version="1.0" encoding="UTF-8"?>\n') f.write('<kml xmlns="http://www.opengis.net/kml/2.2">\n<Document>\n<Placemark>\n<LineString>\n<tessellate>1</tessellate>\n<coordinates>\n') def write_kml_point(self, lat, lon): with open(self.file_name, 'a') as f: f.write(f"{lon},{lat},0\n") def close_kml_file(self): with open(self.file_name, 'a') as f: f.write('</coordinates>\n</LineString>\n</Placemark>\n</Document>\n</kml>') def gps_callback(self, msg): latitude = msg.latitude longitude = msg.longitude self.write_kml_point(latitude, longitude) if __name__ == "__main__": rospy.init_node("gps_to_kml_node") kml_writer = GPSToKMLNode() sub = rospy.Subscriber("/fix", NavSatFix, kml_writer.gps_callback) rospy.on_shutdown(kml_writer.close_kml_file) rospy.spin() ``` 该脚本会持续监听GPS数据,并将其追加到指定的KML文件中。完成后可以在Google Earth中加载此文件[^1]。 --- #### 方法三:利用IMU/GPS融合模块(如DETA100) 对于更高精度的需求,可以考虑使用带有惯性测量单元(IMU)和全球定位系统(GPS)的组合设备,比如DETA100系列。这类设备能够提供更加精确的姿态、位置以及速度信息[^4]。 假设已经成功连接了此类硬件,那么可以直接解析其输出的数据包,并进一步处理得到优化后的轨迹。需要注意的是,某些情况下可能还需要额外校正由于信号遮挡等原因引起的误差。 --- ### 总结 以上介绍了三种不同的方案来解决在ROS环境下对GPS轨迹进行有效监控的问题。无论是借助本地化框架还是外部软件平台,都各有优劣之处,最终的选择取决于具体的项目需求和技术背景。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云-激光雷达-Slam-三维牙齿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值