【YOLO】YOLO系列网格划分机制详解

YOLO(You Only Look Once)的网格划分是其目标检测的核心设计之一,旨在将图像分割为多个区域,每个区域独立预测目标。该机制从YOLOv1的固定划分逐步演进为动态化、多尺度化,最终与注意力机制融合。以下分版本解析其核心原理及技术演进:


一、网格划分机制详解

1. 网格划分基本原理

YOLO将输入图像划分为S×S的等分网格​(如7×7或13×13),每个网格独立预测其覆盖区域内的目标。

  • 核心逻辑:每个网格仅对中心点位于其内部的目标负责,通过局部特征提取和全局信息整合实现检测。
  • 责任分配:遵循单一责任原则​(Single Responsibility Principle),若目标的中心点落在某网格内,该网格需预测其位置、尺寸及类别,其他网格即使覆盖目标部分区域也不参与预测。
  • 输出结构:每个网格输出B个边界框​(Bounding Box)、1个置信度分数​(Confidence Score)及C个类别概率
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值