惯性导航原理(二)-平台式+捷联式+INS精度

惯性导航原理

航位推算(Dead-Reckoning):
惯性导航就属于航位推算,每一步都是在上一步坐标的基础上,推算出来的
在这里插入图片描述
缺点:每一步推算都有误差,随过程逐步累加,因此精度发散
优点:独立自主,与绝对定位(如GPS)可互补
转子陀螺:
可基于高速转动的转子陀螺,利用它的定轴性,可测出三个方向姿态角(俯仰、横滚角、航向角),利用两个轴,可测出四个角度,其中有一个角度是冗余的

1D

惯性导航原理:递推式航位推算
-假设有一小车在水平直线轨道上运动
-在小车上沿运动方向上安装了一只加速度计
在这里插入图片描述

2D/3D

2D/3D出现的问题
-由传感器数据获得载体相对于参考坐标系的方
向及其变化的问题。

  • 将传感器数据从“相对于惯性坐标系”转换到“相
    对于参考坐标系”。
  • 需要补偿地球万有引力(重力)加速度。
    解决策略:
    平台式系统和捷联式系统(目前用得较多)
    (Gimbal vs. Strapdown)

平台式系统

物理平台

  • 加速度计敏感轴始终指向东向和北向
  • 载体航向的变化由陀螺感知,据此控制稳定平台的
    转动,使其始终跟踪东向和北向
    在这里插入图片描述

捷联式系统

数学平台

  • 加速度计和陀螺与载体固联(strapdown)
  • 根据陀螺输出更新姿态矩阵,将比力向量投影变换
    至E-N坐标系
    在这里插入图片描述

平台式与捷联式惯导特点对比

在这里插入图片描述

惯性导航系统特性

优点

  • 完全自主性和高可靠性(军用和航空航天)
  • 导航信息丰富
  • 动态性能好(采样率高、频带宽)

缺点

  • 惯性导航误差随时间累积

在这里插入图片描述
由上图可知,初始位置是常值误差,初始速度误差造成的位置误差是随时间一次方发散;而初始姿态角(俯仰角常值误差)常值误差和加速度计误差,是随时间二次方发散;陀螺的零偏误差,造成的位置误差是随时间三次方发散的,这个量的影响是很大的,是一个决定性的误差因素

INS的精度等级

在这里插入图片描述
陀螺零偏为核心指标;目前的MEMS可以达到战术级的精度,它的陀螺零偏要求是1-10°每小时,加速度计零偏要求是万分之一g或千分之一g都可以。

典型战术级惯导

下图是一个战术级惯导的指标:
在这里插入图片描述
注:对于陀螺零偏,只需要记住0.01deg/h(对应导航级)和1deg/h(对应战术级)即可。

惯性器件的相对测量能力

以导航级惯导的陀螺为例

  • 陀螺零偏0.01 deg/hr
  • 陀螺量程1000 deg/s = 3600,000 deg/hr
  • 相对测量能力= 量程/ 零偏= 3.6x108 ! (非严谨类比:等效于测量武汉—北京距离,精度3mm!)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十八与她

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值