非线性最小二乘法之Gauss Newton、L-M、Dog-Leg

非线性最小二乘法之Gauss Newton、L-M、Dog-Leg     (这个全)

利用Levenberg_Marquardt算法求解无约束的非线性最小二乘问题~

SLAM中的优化理论(二)- 非线性最小二乘

SLAM中的优化理论(一)—— 线性最小二乘

谈谈自己对线性最小二乘和非线性最小二乘之间关系的理解~





1.最速下降法和牛顿法都是将误差项的二范数的平方泰勒展开,

只是最速下降保留一阶项,牛顿法保留二阶项

2.高斯牛顿法是先将误差项泰勒展开再保留一阶项,再算它的二

范数的平方,用JTJ近似H

3.LM就是在高斯牛顿的H阵对角线上加λ,并且它还能不断变化


最速下降



牛顿法










线性最小二乘法拟合是一种常用的数据拟合方法,适用于具有线性关系的数据。下面是一般的步骤: 1. 确定拟合函数:根据数据的特点和背景知识,选择适当的拟合函数形式。这个函数可以包含一个或多个参数,需要根据数据拟合来确定。 2. 构建目标函数:将拟合函数与实际观测数据进行比较,构建一个目标函数。通常,目标函数是观测数据与拟合函数之间的差异的平方和。 3. 初值设定:为拟合函数中的参数设定初始值。这可以基于经验、先前的研究或者其他方法来确定。 4. 迭代优化:使用最小二乘法,通过迭代优化来调整参数值,使目标函数最小化。常用的迭代优化算法包括Levenberg-Marquardt算法、Gauss-Newton算法等。 5. 收敛判据:设定收敛判据,例如目标函数的变化小于某个阈值或者参数的变化小于某个阈值。 6. 参数估计:当迭代过程满足收敛判据时,得到最优的参数值。这些参数值表示了拟合函数与实际数据之间的最佳拟合。 7. 拟合效果评估:通过分析拟合结果、残差等指标来评估拟合效果。可以使用统计量、图形等方法进行评估。 需要注意的是,线性最小二乘法拟合是一个迭代过程,初始值的选择以及收敛判据的设定都可能影响最终的结果。因此,在进行线性最小二乘法拟合时,需要根据具体问题进行调整和优化。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值