非线性最小二乘法之Gauss Newton、L-M、Dog-Leg (这个全)
利用Levenberg_Marquardt算法求解无约束的非线性最小二乘问题~
1.最速下降法和牛顿法都是将误差项的二范数的平方泰勒展开,
只是最速下降保留一阶项,牛顿法保留二阶项
2.高斯牛顿法是先将误差项泰勒展开再保留一阶项,再算它的二
范数的平方,用JTJ近似H
3.LM就是在高斯牛顿的H阵对角线上加λ,并且它还能不断变化
最速下降
牛顿法
1.最速下降法和牛顿法都是将误差项的二范数的平方泰勒展开,
只是最速下降保留一阶项,牛顿法保留二阶项
2.高斯牛顿法是先将误差项泰勒展开再保留一阶项,再算它的二
范数的平方,用JTJ近似H
3.LM就是在高斯牛顿的H阵对角线上加λ,并且它还能不断变化
最速下降