MATLAB代码|蚁群算法|计算一元函数最大值

在这里插入图片描述

蚁群算法

智能算法

智能算法是一类模仿自然界中智能生物行为的计算方法。它通过模拟生物的思维方式和学习能力,利用计算机技术解决复杂问题。智能算法具有自适应性、自组织性和自学习性等特点,能够在搜索空间中找到最优解或接近最优解。

蚁群

启发式的、模拟蚂蚁觅食行为的优化算法。它以蚁群觅食行为中的信息交流和合作为基础,通过模拟蚂蚁在搜索问题中的行动,来寻找最优解或近似最优解。

函数形式

-(x.^4 + - 0.2 * cos(3 * pi * x) + 0.6)
即:
− ( x 4 + − 0.2 c o s ( 3 x ⋅ π ) + 0.6 ) -(x^4 + - 0.2 cos(3x \cdot \pi ) + 0.6) (x4+0.2cos(3xπ)+0.6)

定义域范围为(-1,1)

程序运行结果

初始蚁群分布:
请添加图片描述
优化后的蚁群分布如下:

请添加图片描述
程序计算的结果如下:
请添加图片描述
即:

  • 在x=0.0000381257时,函数取到最大值
  • 最大值为0.4
    符合直观上的实际情况。

源代码

% 蚁群求解一元函数最大值
% 2024-8-4/Ver1
clear;clc;close all;
rng(0);
Ants = 300; %蚂蚁数量
Times = 80; %仿真时长
Rou = 0.9;
P0 = 0.2;
x_lower = -1; %x轴范围下界
x_upper = 1; %x轴范围上界限

%% 随机生成蚁群位置
ant = zeros(Ants, 1);
for i = 1: Ants
    ant(i, 1) = x_lower + (x_upper - x_lower) * rand;
    Tau(i) = F(ant(i, 1));  % 信息素
end

step = 0.05; %网格密度
f = '-(x.^4 + - 0.2 * cos(3 * pi * x)  + 0.6)';
%% 画图
x= x_lower:step:x_upper;
z = eval(f);
figure;
plot(x,z);
hold on;
plot(ant(:, 1), Tau, 'k*');
fprintf('完整代码下载链接:https://gf.bilibili.com/item/detail/1105977012');
title('函数形状与初始状态的粒子分布情况');
蚁群优化算法(Ant Colony Optimization,ACO)是一种模拟蚂蚁觅食行为的启发式算法,用于求解组合优化问题。下面是一个用 MATLAB 实现蚁群优化算法求解最大值的示例代码: ```matlab % 参数设置 numAnts = 50; % 蚂蚁数量 numIterations = 100; % 迭代次数 alpha = 1; % 信息素重要程度参数 beta = 2; % 启发式信息重要程度参数 rho = 0.5; % 信息素挥发率 Q = 100; % 信息素增加强度参数 % 初始化问题相关数据 lowerBounds = [-5, -5]; % 变量取值下界 upperBounds = [5, 5]; % 变量取值上界 numVariables = length(lowerBounds); % 变量数量 % 初始化蚁群 positions = rand(numAnts, numVariables) .* (upperBounds - lowerBounds) + lowerBounds; % 随机初始化蚂蚁位置 bestPosition = zeros(1, numVariables); % 最优解位置 bestFitness = -Inf; % 最优解适应度 % 迭代优化 for iter = 1:numIterations % 计算蚂蚁在当前位置的适应度 fitnesses = evaluateFitness(positions); % 更新最优解 [maxFitness, maxIndex] = max(fitnesses); if maxFitness > bestFitness bestFitness = maxFitness; bestPosition = positions(maxIndex, :); end % 更新信息素 deltaTau = zeros(numAnts, numVariables); for ant = 1:numAnts for var = 1:numVariables deltaTau(ant, var) = Q / fitnesses(ant); % 按照适应度增加信息素 end end % 更新位置 for ant = 1:numAnts % 选择下一个位置 nextPosition = selectNextPosition(positions(ant, :), deltaTau); % 更新位置 positions(ant, :) = nextPosition; end % 信息素挥发 deltaTau = (1 - rho) * deltaTau; end % 输出结果 disp('Best Fitness:'); disp(bestFitness); disp('Best Position:'); disp(bestPosition); % 计算适应度的函数,具体问题需根据实际情况自行定义 function fitnesses = evaluateFitness(positions) % 这里以求解目标函数最大值为例 fitnesses = -sum(positions.^2, 2); % 假设目标函数为多个变量的平方和的负值 end % 选择下一个位置的函数,具体问题需根据实际情况自行定义 function nextPosition = selectNextPosition(currentPosition, deltaTau) % 这里以轮盘赌法选择下一个位置为例 probabilities = deltaTau .* (1 ./ (currentPosition.^2)); % 启发信息为当前位置的倒数 probabilities = probabilities / sum(probabilities); % 概率归一化 cumulativeProbabilities = cumsum(probabilities); randomValue = rand(); nextPositionIndex = find(cumulativeProbabilities >= randomValue, 1); nextPosition = currentPosition; nextPosition(nextPositionIndex) = 0; % 简化问题,只改变一个变量 end ``` 以上代码以一个简单的目标函数为例,假设目标函数为多个变量的平方和的负值。你可以根据实际问题自行修改 `evaluateFitness` 函数来计算适应度,并修改 `selectNextPosition` 函数来选择下一个位置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB卡尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值