蚁群算法
智能算法
智能算法是一类模仿自然界中智能生物行为的计算方法。它通过模拟生物的思维方式和学习能力,利用计算机技术解决复杂问题。智能算法具有自适应性、自组织性和自学习性等特点,能够在搜索空间中找到最优解或接近最优解。
蚁群
启发式的、模拟蚂蚁觅食行为的优化算法。它以蚁群觅食行为中的信息交流和合作为基础,通过模拟蚂蚁在搜索问题中的行动,来寻找最优解或近似最优解。
函数形式
-(x.^4 + - 0.2 * cos(3 * pi * x) + 0.6)
即:
−
(
x
4
+
−
0.2
c
o
s
(
3
x
⋅
π
)
+
0.6
)
-(x^4 + - 0.2 cos(3x \cdot \pi ) + 0.6)
−(x4+−0.2cos(3x⋅π)+0.6)
定义域范围为(-1,1)
程序运行结果
初始蚁群分布:
优化后的蚁群分布如下:
程序计算的结果如下:
即:
- 在x=0.0000381257时,函数取到最大值
- 最大值为0.4
符合直观上的实际情况。
源代码
% 蚁群求解一元函数最大值
% 2024-8-4/Ver1
clear;clc;close all;
rng(0);
Ants = 300; %蚂蚁数量
Times = 80; %仿真时长
Rou = 0.9;
P0 = 0.2;
x_lower = -1; %x轴范围下界
x_upper = 1; %x轴范围上界限
%% 随机生成蚁群位置
ant = zeros(Ants, 1);
for i = 1: Ants
ant(i, 1) = x_lower + (x_upper - x_lower) * rand;
Tau(i) = F(ant(i, 1)); % 信息素
end
step = 0.05; %网格密度
f = '-(x.^4 + - 0.2 * cos(3 * pi * x) + 0.6)';
%% 画图
x= x_lower:step:x_upper;
z = eval(f);
figure;
plot(x,z);
hold on;
plot(ant(:, 1), Tau, 'k*');
fprintf('完整代码下载链接:https://gf.bilibili.com/item/detail/1105977012');
title('函数形状与初始状态的粒子分布情况');