【MATLAB滤波】维度自适应的CKF(容积卡尔曼滤波)代码|从1维~n维,根据状态量和观测量维度自动调整滤波器结构|完整代码,带中文注释

在这里插入图片描述

本文所述的代码实现了n维自适应容积卡尔曼滤波算法,支持动态调整状态和观测维度(通过参数dim配置),适用于高维非线性系统的状态估计。代码通过球面径向准则生成容积点,避免了雅可比矩阵线性化需求,显著提升了高维场景下的滤波精度与稳定性
订阅专栏后,可查看完整的代码,可复制粘贴,粘贴到MATLAB空脚本中即可直接运行

变维度演示

当维度为1时:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

当维度为3时:

### CKF容积卡尔曼滤波)算法实现与介绍 #### 1. 容积卡尔曼滤波简介 容积卡尔曼滤波CKF, Cubature Kalman Filter)由加拿大研究者 Arasaratnam Haykin 在2009年提出,专门用于处理非线性高斯系统的状态估计问题。该方法利用三阶球面径向容积准则来近似计算状态的后验均值协方差矩阵,在理论上能够以三阶精度逼近任意非线性的高斯分布的状态预测[^4]。 #### 2. CKF 的工作原理 CKF 使用一组特定权重的选择点——即所谓的 sigma 点集来进行数值积分操作。这些点位于单位超球面上,并且它们的位置取决于当前时刻的状态估计及其对应的不确定性描述符—协方差矩阵。具体来说: - **初始化阶段**:设定初始条件,包括先验状态估计 $\hat{x}_0$ 及其误差协方差 $P_0$; - **时间更新步**:对于每一个新的测周期 t ,根据上一时刻的状态预测下一刻可能达到的新位置;此过程涉及构建相应的 Jacobian 或 Hessian 行列式以及执行 Cholesky 分解等数学运算; - **测更新步**:当接收到实际观测数据 y 后,则需调整之前所做的预测使之更贴近真实情况;这一步骤同样依赖于某些辅助函数如残差矢 r(t),并最终完成对原假设概率密度 p(x|y) 的修正。 #### 3. C++ 中的简单实现案例 下面给出一段简化版的 C++ 实现代码片段作为参考,展示了如何定义一个基本框架下的 `CKF` 类型对象并调用其中的方法进行一次完整的迭代循环: ```cpp #include <iostream> using namespace std; class CKF { public: void init(double* x_init, double* P_init); // 初始化参数设置 void predict(); // 时间更新部分 void update(const double z[]); // 测更新环节 private: int n; // 数大小 double *x_pred, *x_upd; // 预测/校正后的状态指针 double *P_pred, *P_upd; // 协方差阵存储空间地址 }; int main(){ /* 创建实例 */ CKF my_ckf; /* 假设已知初态信息 */ double initial_state[/*维度*/], cov_matrix[/*数×数*/]; /* 开始运行 */ my_ckf.init(initial_state,cov_matrix); while(/*未结束*/) { my_ckf.predict(); if (new_measurement_available()) { const double measurement_data[]; my_ckf.update(measurement_data); } } return 0; } ``` 上述伪码仅提供了一个大致轮廓,具体的内部逻辑还需要依据应用场景进一步细化完善。例如,在 `predict()` 函数内要考虑到系统动态特性建模的具体形式;而在 `update()` 方法里则应加入有关传感器噪声统计特征的知识以便更好地融合外部输入的信息源[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB卡尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值