大点云配准

一开始,打算用正态波松,发现不行,原因是点的个数太多.


1,将两个点云分别采样100万个点,法线估计,SIFT关键点,PFH特征描述子提取

2,点云粗配准两个PFH特征描述子,得到双向一致性的匹配点对

3,sac确定内部点,并得到变换矩阵

4,根据变换矩阵,得到输入下一步精配准的输入点云

5,ICP精配准

### 关于点云中的最团算法 在点云领域,除了常见的 CPD 和 ICP 算法外,基于图论的最团(Maximum Clique)算法也逐渐被应用于解决复杂的匹问题。这种方法通常将点云间的对应关系建模为加权图结构,在此基础上寻找最优子集作为最终的匹结果。 #### 最团算法的基本概念 最团是指在一个无向图中找到最的完全子图集合。对于点云而言,可以构建一个二分图模型[^3],其中一边表示源点云节点,另一边为目标点云节点。边权重则可以通过某种相似度量函数计算得出,例如欧氏距离或其他特征描述符的距离。随后,通过求解该图的最团来获得最佳对应的点对集合。 #### 基于最团的点云流程 1. **构建邻接矩阵** 首先定义两组点云之间的关联程度,并将其转化为邻接矩阵形式。假设 \( P \) 表示源点云,\( Q \) 表示目标点云,则每一对点 \( p_i, q_j \) 的相似性可以用以下公式衡量: \[ w_{ij} = e^{-\frac{\|p_i - T(q_j)\|^2}{\sigma}} \] 这里 \( T(\cdot) \) 是当前估计的姿态变换参数,而 \( \sigma \) 控制高斯核宽度[^4]。 2. **转换成整数规划问题** 寻找最团本质上是一个 NP 完全问题,因此实际应用时常采用近似方法或者启发式搜索策略加以简化处理。一种常见的方式是利用线性松弛技术把原始离散变量替换为连续区间上的值,从而降低复杂度并加快收敛速度。 3. **优化求解器的选择** 对于规模数据场景下的高效运算需求,可以选择一些专门设计好的库来进行加速操作,比如 NetworkX 或者 igraph 提供的相关功能模块可以直接调用来完成这项任务。 ```python import networkx as nx def max_clique_algorithm(graph): # 使用networkx内置的方法获取最团 clique = list(nx.find_cliques(graph)) return sorted(clique, key=len)[-1] G = nx.Graph() # 添加节点与边... max_clique_result = max_clique_algorithm(G) print(max_clique_result) ``` 以上代码片段展示了如何借助 Python 中流行的 `NetworkX` 库快速实现基本框架搭建过程。 #### 优势分析 相比传统迭代最近点 (ICP),最团方法具有以下几个显著优点: - 能够有效应对噪声干扰以及异常值影响; - 更适合处理部分重叠区域较小的情况; - 可扩展性强,便于引入额外约束条件进一步提升性能表现。 然而需要注意的是,由于涉及到组合爆炸特性,当输入规模较时可能会面临时间开销过高的挑战,此时需考虑适当降维或者其他预处理手段予以缓解压力。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值