松耦合:单纯将多个传感器把观测到的数据合并处理,不考虑传感器内部的性质
紧耦合:考虑传感器内部的误差
举个例子:对于激光的点云数据,如果只考虑点云匹配后得到的位姿,将位姿用于其他地方优化,而忽略了点云匹配的误差,那就是松耦合;如果考虑点云匹配的残差,即点与点的误差,将这个数据加入优化,即是紧耦合。
参考资料:自动驾驶与机器人中的slam技术(高翔)

本文讨论了在自动驾驶和机器人技术中,松耦合和紧耦合两种数据处理方法的区别。松耦合仅关注传感器外部数据整合,而忽视内部误差;紧耦合则考虑匹配误差,将这些信息纳入优化过程。以激光点云数据为例,区分了这两种处理方式的应用.
松耦合:单纯将多个传感器把观测到的数据合并处理,不考虑传感器内部的性质
紧耦合:考虑传感器内部的误差
举个例子:对于激光的点云数据,如果只考虑点云匹配后得到的位姿,将位姿用于其他地方优化,而忽略了点云匹配的误差,那就是松耦合;如果考虑点云匹配的残差,即点与点的误差,将这个数据加入优化,即是紧耦合。
参考资料:自动驾驶与机器人中的slam技术(高翔)

2205
807
2040
3495

被折叠的 条评论
为什么被折叠?