自动控制原理学习笔记(二)

第二章 控制系统的简单数学模型

  • 时域:常微分方程
  • 复频域:传递函数
  • 方框图
  • 信号流图(Mason增益公式)
  • 状态空间模型
  • 离散系统:脉冲传递函数

2.1 基本概念

2.1.1 数学模型的定义
  • 描述各变量间关系的数学、图形或数字表达式

  • 同一物理系统 可以由 不同的模型描述

  • 不同物理系统 可以由 相同的模型描述

2.1.2 建模方法
  1. 机理分析——白箱
  2. 测试法——黑箱
    • 实验法、经验法
  3. 综合法——灰箱
    • 系统辨识与参数估计
2.1.3 模型种类
  1. 经典控制:微分、差分、瞬态响应函数、传递函数、频率特性
  2. 现代控制:状态空间表达式、状态方程

2.2 微分方程的建立——时域

2.2.1 SISO解析法写微分方程的基本步骤
  • 步骤:
    1. 分析:确定输入输出
    2. 列写:按基本定律列方程组,注意负载效应
    3. 化简:消去中间变量,使方程只含输入输出及其各阶导数
    4. 整理:输出放左边,输入放右边,各按导数降阶排列
2.2.2 机械系统
  • 基本要素运动方程
    质量要素 F = m d 2 x d t 2 F=m\dfrac{\mathrm d^2x}{\mathrm dt^2} F=mdt2d2x
    弹性要素 F = k x = k ∫ 0 t v   d t F = kx = k\int_0^t v \ \mathrm dt F=kx=k0tv dt
    阻尼要素 F = f v = f x ˙ F=fv=f\dot x F=fv=fx˙
    惯性要素 T = J α = J d 2 θ d t 2 T = J\alpha = J\dfrac{\mathrm d^2\theta}{\mathrm dt^2} T=Jα=Jdt2d2θ
  • 摩擦力
    F c = F B + F f = f d x d t + F f F_c = F_B + F_f = f\frac{\mathrm dx}{\mathrm dt}+F_f Fc=FB+Ff=fdtdx+Ff

  • 摩擦力矩
    T c = T B + T f = K c d θ d t + T f T_c = T_B + T_f = K_c\frac{\mathrm d\theta}{\mathrm dt} + T_f Tc=TB+Tf=Kcdtdθ+Tf


2.3 传递函数(仅适用于线性定常系统)——复频域

2.3.1 拉普拉斯变换及性质
  • $F(s)= L[f(t)] = \int_0^\infty f(t)e^{-st} \mathbb dt $

  • 性质

    1. 线性:$L[af_1(t)+bf_2(t)]=aL[f_1(t)]+bL[f_2(t)] $

    2. 微分:

      • L [ d f ( t ) d t ] = s F ( s ) − f ( 0 ) L[\dfrac{df(t)}{dt}]=sF(s)-f(0) L[dtdf(t)]=sF(s)f(0)

      • 推论:

        f ( 0 ) = f ’ ( 0 ) = ⋯ = f ( n − 1 ) ( 0 ) = 0 f(0)=f’(0)=\cdots=f^{(n-1)}(0) = 0 f(0)=f(0)==f(n1)(0)=0,则
        L [ d n f ( t ) d t n ] = s n F ( s ) L[\dfrac{d^nf(t)}{dt^n}]=s^nF(s)\\ L[dtndnf(t)]=snF(s)

    3. 积分定理:若有 L [ f ( t ) ] = F ( s ) L[f(t)]=F(s) L[f(t)]=F(s),则有
      L [ ∫ 0 t f ( τ ) d τ ] = 1 s F ( s ) L[\int_0^t f(\tau)d\tau]=\frac{1}{s}F(s) L[0tf(τ)dτ]=s1F(s)

    4. 初值定理: f ( 0 + ) = lim ⁡ s → ∞   s F ( s ) f(0^+)=\lim\limits_{s\rightarrow\infty}\ sF(s) f(0+)=slim sF(s)

    5. 终值定理: lim ⁡ t → ∞   f ( t ) = lim ⁡ s → 0   s F ( s ) \lim\limits_{t\rightarrow\infty}\ f(t) = \lim\limits_{s\rightarrow0}\ sF(s) tlim f(t)=s0lim sF(s)

    6. 位移定理 L [ e a t f ( t ) ] = F ( s − a ) \mathscr{L}[e^{at}f(t)]=F(s-a) L[eatf(t)]=F(sa)

    7. 延迟定理 L [ f ( t − a ) ] = e − a s F ( s ) \mathscr{L}[f(t-a)]=e^{-as}F(s) L[f(ta)]=easF(s)

    8. 相似定理: L [ f ( t a ) ] = a F ( a s ) \mathscr{L}[f\left(\dfrac{t}{a}\right)]=aF(as) L[f(at)]=aF(as)

    9. 卷积定理

2.3.2 传递函数及其表达形式
  • 线性定常系统传递函数定义:

    • 零初始条件下,系统输出量的Laplace变换与输入量的Laplace变换之比。
    • G ( s ) = Y ( s ) R ( s ) = b n s n + b n − 1 s n − 1 + ⋯ + b 1 s + b 0 s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 G(s)=\dfrac{Y(s)}{R(s)}=\dfrac{b_ns^n+b_{n-1}s^{n-1}+\cdots+b_1s+b_0}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0} G(s)=R(s)Y(s)=sn+an1sn1++a1s+a0bnsn+bn1sn1++b1s+b0
  • Remarks

    1. 传递函数与微分方程一一对应
    2. 参数仅取决于系统本身
    3. 与输入输出信号(的作用/取出)位置相关
    4. 系数 a , b ∈ R a, b\in \mathbb{R} a,bR,零点、极点是实数或共轭复数
    5. 分母阶次n ≥ \geq 分子阶次m(因果系统)
    6. 不反映真实物理结构
    7. 令分母=0,可得系统的特征方程
    8. G ( s ) G(s) G(s)的Laplace反变换是脉冲响应 g ( t g(t g(t) g ( t ) = L − 1 [ G ( s ) ⋅ L [ δ ( t ) ] ] = L − 1 [ G ( s ) ⋅ 1 ] g(t)=\mathscr L^{-1}[G(s)\cdot \mathscr L[\delta(t)]]=\mathscr L^{-1}[G(s)\cdot 1] g(t)=L1[G(s)L[δ(t)]]=L1[G(s)1]
1. 根轨迹形式
  • 零点与极点
  • G ( s ) = b 0 ( s − z 1 ) ( s − z 2 ) ⋯ ( s − z m ) a 0 ( s − p 1 ) ( s − p 2 ) ⋯ ( s − p n ) = K ∗ ∏ i = 1 m ( s − z i ) ∏ j = 1 n ( s − p j ) G(s)=\dfrac{b_0(s-z_1)(s-z_2)\cdots(s-z_m)}{a_0(s-p_1)(s-p_2)\cdots(s-p_n)}=K^*\dfrac{\prod\limits_{i=1}^m(s-z_i)}{\prod\limits_{j=1}^n(s-p_j)} G(s)=a0(sp1)(sp2)(spn)b0(sz1)(sz2)(szm)=Kj=1n(spj)i=1m(szi)
  • 传递系数 / 根轨迹增益: K ∗ = b 0 a 0 K^* = \dfrac{b_0}{a_0} K=a0b0
2. 频率法表达(开环增益K)
  • G ( s ) = b m ( τ 1 s + 1 ) ( τ 2 2 s 2 + 2 ζ τ 2 s + 1 ) ⋯ ( τ i s + 1 ) a m ( T 1 s + 1 ) ( T 2 2 s 2 + 2 ζ T 2 s + 1 ) ⋯ ( T j s + 1 ) G(s)=\dfrac{b_m(\tau_1s+1)(\tau_2^2s^2+2\zeta\tau_2s+1)\cdots(\tau_is+1)}{a_m(T_1s+1)(T_2^2s^2+2\zeta T_2s+1)\cdots(T_js+1)} G(s)=am(T1s+1)(T22s2+2ζT2s+1)(Tjs+1)bm(τ1s+1)(τ22s2+2ζτ2s+1)(τis+1)
  • 一次项对应实数零、极点,二次项对应共轭复数零、极点
  • T ,   τ T,\ \tau T, τ 为时间常数
  • 关系:开环增益 K = b m a m = K ∗ ∏ i = 1 m ( − z i ) ∏ j = 1 n ( − p j ) K=\dfrac{b_m}{a_m}=K^*\dfrac{\prod\limits_{i=1}^m(-z_i)}{\prod\limits_{j=1}^n(-p_j)} K=ambm=Kj=1n(pj)i=1m(zi) (令 s = 0 s=0 s=0
2.3.3 系统基本环节及其传递函数
  1. 放大环节(比例环节)
  • y ( t ) = K r ( t ) y(t)=Kr(t) y(t)=Kr(t)
  • G ( s ) = Y ( s ) R ( s ) = K G(s)=\dfrac{Y(s)}{R(s)}=K G(s)=R(s)Y(s)=K
  1. 惯性环节
  • T d y ( t ) d t + y ( t ) = r ( t ) T\dfrac{\mathbb dy(t)}{\mathbb dt}+y(t)=r(t) Tdtdy(t)+y(t)=r(t)
  • G ( s ) = 1 T s + 1 G(s)=\dfrac{1}{Ts+1} G(s)=Ts+11
  • T T T:惯性环节的时间常数 T = 0 T=0 T=0 时该环节变成比例环节。
  1. 积分环节
  • y ( t ) = ∫ r ( t ) d t y(t) = \int r(t) \mathbb d t y(t)=r(t)dt
  • G ( s ) = Y ( s ) R ( s ) = 1 s G(s) = \dfrac{Y(s)}{R(s)}=\dfrac{1}{s} G(s)=R(s)Y(s)=s1
  1. 振荡环节

  2. 纯微分

  3. 一阶微分

  4. 二阶微分

  5. 延迟环节


2.2 方框图

概念
  1. 信号线
    • 信号、流向
  2. 函数方框
    • 传递函数(单向运算算子)
  3. 相加点
    • 加减、代数和
  4. 分支点
    • 同一位置数值性质相同
  • Remarks:
    • 同一系统的方框图可以不同
绘图步骤
  1. 零初始条件各环节的传递函数
  2. 画各环节的函数方框
  3. 信号传输方向连接函数方框
变换规则
  • 基本原则:等效原则——数学关系(传递函数)不改变
  1. 串联

    • G ( s ) = ∏ k = 1 n ( ± ) G k ( s ) G(s)= \prod\limits_{k=1}^n (\pm)G_k(s) G(s)=k=1n(±)Gk(s)
  2. 并联

    • G ( s ) = ∑ k = 1 n ( ± ) G k ( s ) G(s)= \sum\limits_{k=1}^n (\pm)G_k(s) G(s)=k=1n(±)Gk(s)
  3. 单回路反馈

    • 反馈表达式:偏差信号 ε ( s ) = R ( s ) ± B ( s ) \varepsilon(s)= R(s)\boldsymbol\pm B(s) ε(s)=R(s)±B(s)

      前向通道传函 G ( s ) G(s) G(s)

      反馈通道传函 H ( s ) H(s) H(s)

      (开环传函 G ( s ) H ( s ) G(s)H(s) G(s)H(s)

      闭环传函 Φ ( s ) \varPhi(s) Φ(s)

    Φ ( s ) = G ( s ) 1 ∓ G ( s ) H ( s ) \varPhi(s) = \dfrac{G(s)}{1\boldsymbol{\mp} G(s)H(s)} Φ(s)=1G(s)H(s)G(s)

    其中 – 代表正反馈, + 代表负反馈

  4. 相加点与分支点的移动

    • 前:逆信号流向;后:顺信号流向
    1. 相加点:往前移,除以传函;往后移,乘以传函。
    2. 分支点:往前移,乘以传函;往后移,除以传函。
    3. 变单位反馈:
    • Remarks
      • 分支点尽量不要移动到相加点上,因为两者不能直接交换顺序,反之亦然
  • 化简的一般步骤
    1. 确定输入输出:多输入可应用叠加原理(线性系统)
    2. 消除交叉
    3. 多(嵌套)回路:由内向外处理
几个系统传递函数
image-20191101104129442
  1. 开环传递函数:前向通道传函与反馈通路传函的乘积(不带符号)

    • B ( s ) ε ( s ) = G ( s ) H ( s ) \dfrac{B(s)}{\varepsilon(s)}=G(s)H(s) ε(s)B(s)=G(s)H(s)
  2. 输出对参考输入的闭环(令扰动为零)

    • Φ ( s ) = Y ( s ) R ( s ) = G 1 ( s ) G 2 ( s ) 1 + G 1 ( s ) G 2 ( s ) H ( s ) \varPhi(s)=\dfrac{Y(s)}{R(s)}=\dfrac{G_1(s)G_2(s)}{1+G_1(s)G_2(s)H(s)} Φ(s)=R(s)Y(s)=1+G1(s)G2(s)H(s)G1(s)G2(s)
  3. 输出对扰动输入的闭环(零参考输入为零)

    • Φ F ( s ) = Y ( s ) F ( s ) = G 2 ( s ) 1 + G 1 ( s ) G 2 ( s ) H ( s ) \varPhi_F(s)=\dfrac{Y(s)}{F(s)}=\dfrac{G_2(s)}{1+G_1(s)G_2(s)H(s)} ΦF(s)=F(s)Y(s)=1+G1(s)G2(s)H(s)G2(s)
  4. 系统总输出:叠加原理

    • Y ( s ) = Φ ( s ) R ( s ) + Φ F ( s ) F ( s ) Y(s)=\varPhi(s)R(s)+\varPhi_F(s)F(s) Y(s)=Φ(s)R(s)+ΦF(s)F(s)
  5. 偏差信号对参考输入的闭环
    Φ ε ( s ) = ε ( s ) R ( s ) = R ( s ) − Y ( s ) H ( s ) R ( s ) = 1 − H ( s ) Y ( s ) R ( s ) = 1 − H ( s ) Φ ( s ) = 1 1 + G 1 ( s ) G 2 ( s ) H ( s ) \begin{aligned} \varPhi_\varepsilon(s)&=\dfrac{\varepsilon(s)}{R(s)}\\ &=\dfrac{R(s)-Y(s)H(s)}{R(s)}\\ &=1-H(s)\dfrac{Y(s)}{R(s)}\\ &=\boldsymbol{1-H(s)\varPhi(s)}\\ &=\dfrac{1}{1+G_1(s)G_2(s)H(s)} \end{aligned} Φε(s)=R(s)ε(s)=R(s)R(s)Y(s)H(s)=1H(s)R(s)Y(s)=1H(s)Φ(s)=1+G1(s)G2(s)H(s)1

  6. 偏差信号对扰动输入的闭环

    • Φ ε F ( s ) = ε ( s ) F ( s ) = − G 2 ( s ) H ( s ) 1 + G 1 ( s ) G 2 ( s ) H ( s ) \varPhi_{\varepsilon F}(s)=\dfrac{\varepsilon(s)}{F(s)}=\dfrac{-G_2(s)H(s)}{1+G_1(s)G_2(s)H(s)} ΦεF(s)=F(s)ε(s)=1+G1(s)G2(s)H(s)G2(s)H(s)
  7. 系统总偏差:叠加原理

    • ε ( s ) = Φ ε ( s ) R ( s ) + Φ ε F ( s ) F ( s ) \varepsilon(s)=\varPhi_\varepsilon(s)R(s)+\varPhi_{\varepsilon F}(s)F(s) ε(s)=Φε(s)R(s)+ΦεF(s)F(s)
  • 特征多项式(方程):(令)以上各式共同分母(=0),即

1 + G 1 ( s ) G 2 ( s ) H ( s ) = 1 + G ( s ) H ( s )   ( = 0 ) 1+G_1(s)G_2(s)H(s)=1+G(s)H(s) \ (=0) 1+G1(s)G2(s)H(s)=1+G(s)H(s) (=0)

  • 已知系统闭环传函 Φ ( s ) \Phi(s) Φ(s),可得等效的单位反馈开环传函 Φ ( s ) 1 − Φ ( s ) \dfrac{\Phi(s)}{1-\Phi(s)} 1Φ(s)Φ(s)

2.3 信号流图

1. 相关术语
  • 节点:变量
    • 源节点(source):只有输出
    • 阱节点(sink):只有输入
    • 混合节点:既有输入又有输出
  • 支路:乘法器——信号流经支路时被乘以支路增益而变换为另一信号
    • 前向通路(forward path):信号从源节点到阱节点传递时,每个节点只经过一次的通路。
    • 回路
      • 反馈回路、单回路(feedback loop):起点和终点是同一点,且回路中的节点只经过一次。
      • 回路增益:回路中所有支路增益的乘积(注意负反馈的负号要在反馈通路传函身上体现)
    • 不接触回路(nontouching loop):两个或多个回路互相无公共节点
  • 信号在支路上沿箭头单向传递
  • 节点变量设置具有**任意性**,即信号流图不唯一
2. 信号流图与方框图
方框图:输入相加点、分支点、信号线方框输出
信号流图:源节点混合节点支路阱节点
3. 梅森增益公式(Mason’s Gain Formula)

P = 1 Δ ∑ k = 1 n P k Δ k P=\dfrac{1}{{\Delta}}{\sum_{k=1}^n P_k\Delta_k} P=Δ1k=1nPkΔk

​ wherein
P k = g a i n   o f   t h e   k t h   f o r w a r d   p a t h (7a) P_k = {\rm gain\ of\ the}\ k{\rm th\ forward\ path} \tag{7a} Pk=gain of the kth forward path(7a)

Δ = 1 − ∑ m L m 1 + ∑ m L m 2 − ⋯ + ( − 1 ) r ∑ m L m r (7b) \Delta = 1-\sum_mL_{m1}+\sum_mL_{m2}-\cdots+(-1)^r\sum_mL_{mr} \tag{7b} Δ=1mLm1+mLm2+(1)rmLmr(7b)

L m r = g a i n   p r o d u c t   o f   t h e   m t h   p o s s i b l e   c o m b i n a t i o n   o f   r   n o n t o u c h i n g   l o o p s (7c) L_{mr}={\rm gain\ product\ of\ the\ }m{\rm th\ possible\ combination\ of\ } r\ {\rm nontouching\ loops} \tag{7c} Lmr=gain product of the mth possible combination of r nontouching loops(7c)

Δ k = t h e   v a l u e   o f   Δ   f o r   t h a t   p a r t   o f   t h e   g r a p h   n o t   t o u c h i n g   t h e   k t h   f o r w a r d   p a t h . (7d) \Delta_{k}={\rm the\ value\ of\ \Delta\ for\ that\ part\ of\ the\ graph\ not\ touching\ the\ }k{\rm th\ forward\ path.} \tag{7d} Δk=the value of Δ for that part of the graph not touching the kth forward path.(7d)

步骤:

  • 找到输入输出节点

  • 列出前向通路及其增益 P k P_k Pk

  • 列出回路和回路增益 L k L_k Lk

  • 列出每两个互不接触的回路增益乘积 L m L n L_mL_n LmLn

    列出每三个互不接触的回路增益乘积 L m L n L h L_mL_nL_h LmLnLh

    ……

  • 列出特征式 Δ = 1 − ∑ L a + ∑ L a L b − ∑ L a L b L c + . . . \Delta=1-\sum L_a+\sum L_aL_b-\sum L_aL_bL_c+... Δ=1La+LaLbLaLbLc+...

  • 列出 Δ k \Delta_k Δk

  • 代入公式 得到传递函数为 P = 1 Δ ∑ P k Δ k P=\dfrac{1}{\Delta}\sum P_k\Delta_k P=Δ1PkΔk

2.4 线性定常连续系统的状态空间模型

{ x ˙ = A x + B u 状 态 方 程 y = C x + D u 输 出 方 程 \begin{cases} \dot x=Ax+Bu &&状态方程\\ y=Cx+Du &&输出方程\\ \end{cases} {x˙=Ax+Buy=Cx+Du

2.4.1 基本概念
  • 状态:完全表征系统运动时域行为的最小内部变量组称为动力学系统的状态
    • 完全表征:只要给定 x i ( t 0 ) x_i(t_0) xi(t0),以及 u i ( t ) , t ≥ t 0 u_i(t),t≥t_0 ui(t),tt0,系统在 t ≥ t 0 t≥t_0 tt0的状态就可以确定。
  • 状态变量:能完全表征系统运动时域行为的最小一组变量
  • 状态向量:各线性独立状态变量组成的(列)向量 x ⃗ = [ x 1 ⋮ x n ] \vec x=\begin{bmatrix}x_1\\\vdots\\x_n\end{bmatrix} x =x1xn
  • 状态空间:状态变量取值的向量空间
  • 状态方程:系统状态与输入的关系
  • 输出方程:系统输出与系统状态、输入的关系
  • 状态空间表达式:式(13)
2.4.2 状态变量图
2.4.3 线性定常连续系统状态空间表达式的建立

一、系统方框图建立

二、根据系统机理推导

由传递函数建立
  1. 部分分式

    • 传递函数展开: G ( s ) = ∑ i = 1 n c i s − λ i G(s)=\sum\limits_{i=1}^n \dfrac{c_i}{s-\lambda_i} G(s)=i=1nsλici ,其中系统特征根 λ i \lambda_i λi互不相等

    • X i ( s ) = U ( s ) s − λ i X_i(s)=\dfrac{U(s)}{s-\lambda_i} Xi(s)=sλiU(s) ,则 s X i ( s ) − λ i X i ( s ) = U ( s ) sX_i(s)-\lambda_iX_i(s)=U(s) sXi(s)λiXi(s)=U(s),经Laplace逆变换得 x ˙ i = λ i x i + u \dot x_i=\lambda_ix_i+u x˙i=λixi+u

    • 状态方程:
      x ˙ ⃗ = [ λ 1 0 λ 2 ⋱ 0 λ n ] x ⃗ + [ 1 1 ⋮ 1 ] u \begin{aligned} \vec{\dot x}= \begin{bmatrix} \lambda_1&&&\boldsymbol 0\\ &\lambda_2\\ &&\ddots\\ &\boldsymbol 0 &&\lambda_n\\ \end{bmatrix} \vec{x}+ \begin{bmatrix} 1\\ 1\\ \vdots\\ 1\\ \end{bmatrix} u \end{aligned} x˙ =λ1λ200λnx +111u

    • 输出方程:

      y ( t ) = [ c 1   ⋯   c n ] x ⃗ y(t)=[c_1\ \cdots\ c_n]\vec x y(t)=[c1  cn]x

    • 注意有重根时的处理方法:课本P443~P444

      1. λ k \lambda_k λk m m m重根,则相关分部分式可写作: ∑ i = 1 m c i ( s − λ k ) i \sum\limits_{i=1}^m\dfrac{c_i}{(s-\lambda_k)^i} i=1m(sλk)ici

      2. 设状态变量: x 1 ( s ) = 1 s − λ k x 2 ( s ) x_1(s) =\dfrac{1}{s-\lambda_k}x_2(s) x1(s)=sλk1x2(s)
        x 2 ( s ) = 1 s − λ k x 3 ( s ) x_2(s)=\dfrac{1}{s-\lambda_k}x_3(s) x2(s)=sλk1x3(s)
        $x_i(s) = \dfrac{1}{s-\lambda_k}U(s) $

      3. 可解得:

        x ˙ 1 = λ k x 1 + x 2 \dot x_1 = \lambda_kx_1+x_2 x˙1=λkx1+x2

        x ˙ 2 = λ k x 2 + x 3 \dot x_2 = \lambda_kx_2+x_3 x˙2=λkx2+x3

        x ˙ i = λ k x i + u \dot x_i = \lambda_kx_i+u x˙i=λkxi+u

  2. 高阶微分方程

    • m < n m<n m<n

      状态变量选取方法:

      x 1 = y x_1=y x1=y

      x 2 = y ˙ x_2=\dot y x2=y˙

      $ x_3=y’’$

      … \dots

      x n = y ( n − 1 ) x_n=y^{(n-1)} xn=y(n1)

2.4.4 ★线性系统的代数等价★
①状态空间 –>传递函数:
  • (Laplace变换、零初始条件)

  • SISO: G ( s ) = C ( s I − A ) − 1 B + D G(s)={\boldsymbol C}(s{\boldsymbol I}-{\boldsymbol A})^{-1}{\boldsymbol B}+{\boldsymbol D} G(s)=C(sIA)1B+D

  • MIMO: Y ( s ) = G ( s ) U ( s ) \boldsymbol Y(s)=\boldsymbol G(s)\boldsymbol U(s) Y(s)=G(s)U(s)

②状态变量的线性变换
  • 通过非奇异线性变换关联的两个状态空间模型等价

  • 数学描述

    • 给定系统 ∑ ( A , B , C , D ) \sum(A,B,C,D) (A,B,C,D)引入线性变换:

      x ˉ = T n × n x \bar x = \boldsymbol T_{n\times n}x xˉ=Tn×nx

    • 则可得到新系统 Σ ‾ ( A ‾ , B ‾ , C ‾ , D ‾ ) \overline \Sigma(\overline A,\overline B,\overline C,\overline D) Σ(A,B,C,D)
      { A ‾ = T A T − 1 B ‾ = T B C ‾ = C T − 1 D ‾ = D \begin{cases} \overline A = TAT^{-1}\\ \overline B = TB\\ \overline C = CT^{-1}\\ \overline D = D\\ \end{cases} A=TAT1B=TBC=CT1D=D

    • 系统 Σ \Sigma Σ Σ ‾ \overline \Sigma Σ 等价

  • 用途:可把状态方程变成Jordan标准型

③等价状态空间模型的性质
  • 具有相同的传递函数
  • 具有相同的特征多项式、特征方程、极点

2.5 线性离散系统的数学模型

2.5.1 基本概念
  • 系统中有至少一处信号只定义在离散时间上
2.5.2 信号采样与保持
理想采样序列
  • e ∗ ( t ) = e ( t ) ∑ n = 0 ∞ δ ( t − n T ) = ∑ n = 0 ∞ e ( n T ) δ ( t − n T ) e^*(t)=e(t)\sum\limits_{n=0}^\infty \delta(t-nT)=\sum\limits_{n=0}^\infty e(nT)\delta(t-nT) e(t)=e(t)n=0δ(tnT)=n=0e(nT)δ(tnT)
  • E ∗ ( s ) = L [ e ∗ ( t ) ] = ∑ n = 0 ∞ e ( n T ) e − n T s E^*(s)=\mathscr L[e^*(t)]=\sum\limits_{n=0}^\infty e(nT)e^{-nTs} E(s)=L[e(t)]=n=0e(nT)enTs
理想采样过程
  1. τ ≪ T \tau \ll T τT ,即认为采样瞬间完成
  2. 认为信号的字长足够无精度损失,即 e ∗ ( k T ) = e ( k T ) e^*(kT) = e(kT) e(kT)=e(kT)
D/A过程(零阶保持器)
  • ZOH:零阶保持器

    • ZOH的单位冲激响应 g h ( t ) g_h(t) gh(t)是一个幅值为1,持续时间为T的矩形脉冲,可表示为两个阶跃函数之差:
      g h ( t ) = 1 ( t ) − 1 ( t − T ) g_h(t)=1(t)-1(t-T) gh(t)=1(t)1(tT)
    • 传递函数: H 0 ( s ) = 1 − e − T s s ≈ e − T s 2 H_0(s)=\dfrac{1-e^{-Ts}}{s}\approx e^{-\dfrac{Ts}{2}} H0(s)=s1eTse2Ts
    • ZOH是一个具有高频衰减特性的低通滤波器。
采样信号的频谱分析(幅频特性,相频特性)
Shannon 采样定理
  • 对于一具有限频谱( − ω m a x < ω < ω m a x -\omega_{\rm max}<\omega<\omega_{\rm max} ωmax<ω<ωmax)的连续信号采样,当== ω s > 2 ω m a x \omega_s > 2\omega_{max} ωs>2ωmax== 则由采样得到的离散信号能无失真地恢复成原来的连续信号
2.5.3 Z变换
  • z = e T s z=e^{Ts} z=eTs
    X ( z ) = X ∗ ( s ) ∣ s = 1 T ln ⁡ z = ∑ n = 0 ∞ x ( n T ) e − n T s ∣ z = e s T = ∑ n = 0 ∞ x ( n T ) z − n X(z)=X^*(s)\bigg |_{s=\frac{1}{T}\ln z}=\sum\limits_{n=0}^\infty x(nT)e^{-nTs}|_{z=e^{sT}}=\sum\limits_{n=0}^\infty x(nT)z^{-n} X(z)=X(s)s=T1lnz=n=0x(nT)enTsz=esT=n=0x(nT)zn
  • z变换把离散系统关于s的超越方程变换为关于z的代数方程
  • X ( z ) = Z [ x ∗ ( t ) ] X(z)=\mathscr Z [x^*(t)] X(z)=Z[x(t)] z变换是对离散信号的变换
  • X ( z ) X(z) X(z)只对应唯一的 x ∗ ( t ) x^*(t) x(t),不对应唯一的 x ( t ) x(t) x(t) (与采样周期相关)
Z变换求取方法及Z变换表
  1. 级数求和法

    • X ( z ) = ∑ n = 0 ∞ x ( n T ) z − n X(z) = \sum\limits_{n=0}^{\infty} x(nT)z^{-n} X(z)=n=0x(nT)zn

    • 一般是等比级数求和: S n = a 1 ( 1 − q n ) 1 − q S_n = \dfrac{a_1(1-q^n)}{1-q} Sn=1qa1(1qn)

  2. 部分分式法

    • 求连续函数 x ( t ) x(t) x(t)的Laplace变换

    • 展开成部分分式,逐项求反变换

    • 查表求z变换(每一部分分式对应的是简单的时间函数)

      拉普拉斯变换时间函数Z变换
      1 δ ( t ) \delta(t) δ(t)1
      e − k T s e^{-kTs} ekTs δ ( t − k T ) \delta(t-kT) δ(tkT) z − k z^{-k} zk
      1 s \dfrac{1}{s} s1 1 ( t ) 1(t) 1(t) z z − 1 \dfrac{z}{z-1} z1z
      1 s 2 \dfrac{1}{s^2} s21 t t t T z ( z − 1 ) 2 \dfrac{Tz}{(z-1)^2} (z1)2Tz
      1 s + a \dfrac{1}{s+a} s+a1 e − a t e^{-at} eat z z − e − a T \dfrac{z}{z-e^{-aT}} zeaTz
      a k = a t T a^{k}=a^{\frac{t}{T}} ak=aTt z z − a \dfrac{z}{z-a} zaz
      ω s 2 + ω 2 \dfrac{\omega}{s^2+\omega^2} s2+ω2ω s i n ω t sin\omega t sinωt z sin ⁡ ω T z 2 − 2 c o s ω T + 1 \dfrac{z\sin\omega T}{z^2-2cos\omega T+1} z22cosωT+1zsinωT
      s s 2 + ω 2 \dfrac{s}{s^2+\omega^2} s2+ω2s c o s ω t cos\omega t cosωt z ( z − cos ⁡ ω T ) z 2 − 2 c o s ω T + 1 \dfrac{z(z-\cos\omega T)}{z^2-2cos\omega T+1} z22cosωT+1z(zcosωT)
      1 ( s + a ) 2 \dfrac{1}{(s+a)^2} (s+a)21 t e − a t te^{-at} teat
      e − k T s G ( s ) e^{-kTs}G(s) ekTsG(s) g ( t − k T ) g(t-kT) g(tkT) z − k Z [ G ( s ) ] z^{-k}\mathscr Z[G(s)] zkZ[G(s)]
  3. 留数计算法

    • X ( z ) = ∑ i = 1 n R e s [ X ( s ) z z − e s T ] s = s i X(z)=\sum\limits_{i=1}^n {\rm Res}\left[ X(s)\dfrac{z}{z-e^{sT}} \right]_{s=s_i} X(z)=i=1nRes[X(s)zesTz]s=si
    • s i s_i si 为非重极点:
      • R e s [ ⋅ ] = lim ⁡ s → s i [ X ( s ) z z − e s T ( s − s i ) ] {\rm Res}[\cdot] = \lim_{s\rightarrow s_i}\left[ X(s)\dfrac{z}{z-e^{sT}}(s-s_i) \right] Res[]=limssi[X(s)zesTz(ssi)]
    • s i s_i si r r r重极点:
      • R e s [ ⋅ ] = 1 ( r − 1 ) ! lim ⁡ s → s i d r − 1 d s r − 1 [ X ( s ) z z − e s T ( s − s i ) r ] {\rm Res}[\cdot] = \dfrac{1}{(r-1)!}\lim_{s\rightarrow s_i}\dfrac{\mathrm d^{r-1}}{\mathrm ds^{r-1}} \left[ X(s)\dfrac{z}{z-e^{sT}}(s-s_i)^r \right] Res[]=(r1)!1limssidsr1dr1[X(s)zesTz(ssi)r]
Z反变换求取方法
  1. 长除法

    • X ( z ) = N ( z ) D ( z ) = b 0 + b 1 z − 1 + ⋯ + b m z − m a 0 + a 1 z − 1 + ⋯ + a n z − n   ,   n ≥ m X(z)=\dfrac{N(z)}{D(z)}=\dfrac{b_0+b_1z^{-1}+\cdots+b_mz^{-m}}{a_0+a_1z^{-1}+\cdots+a_nz^{-n}}\ ,\ n\geq m X(z)=D(z)N(z)=a0+a1z1++anznb0+b1z1++bmzm , nm

    • N ( z ) N(z) N(z)长除 D ( z ) D(z) D(z) 得结果:

      X ( z ) = x ( 0 ) + x ( T ) z − 1 + x ( 2 T ) z − 2 + ⋯ X(z)=x(0)+x(T)z^{-1}+x(2T)z^{-2}+\cdots X(z)=x(0)+x(T)z1+x(2T)z2+

    • 即得反变换:

      x ∗ ( t ) = x ( 0 ) δ ( t ) + x ( T ) δ ( t − T ) + ⋯ x ( k T ) δ ( t − k T ) + ⋯ x^*(t)=x(0)\delta(t)+x(T)\delta(t-T)+\cdots x(kT)\delta(t-kT)+\cdots x(t)=x(0)δ(t)+x(T)δ(tT)+x(kT)δ(tkT)+

  2. 分部分式

    • 先将原式化成以下部分分式形式

      $\dfrac{X(z)}{z} = \sum\limits_{i=1}^n \dfrac{A_i}{z-z_i} $

    • 变形:

      X ( z ) = ∑ i = 1 n A i z z − z i X(z)=\sum\limits_{i=1}^n\dfrac{A_iz}{z-z_i} X(z)=i=1nzziAiz

    • 再查表得反变换

  3. 留数法

    • x ( k T ) = ∑ R e s [ X ( z ) z k − 1 ] x(kT) = \sum \mathrm{Res}[X(z)z^{k-1}] x(kT)=Res[X(z)zk1]
    • z i z_i zi为重极点,则:
      • R e s [ ⋅ ] = 1 ( r − 1 ) ! d r − 1 d z r − 1 [ X ( z ) z k − 1 ( z − z i ) r ] ∣ z = z i {\rm Res}[\cdot] = \dfrac{1}{(r-1)!}\dfrac{\mathrm d^{r-1}}{\mathrm dz^{r-1}} \left[ X(z)z^{k-1}(z-z_i)^r \right]|_{z=z_i} Res[]=(r1)!1dzr1dr1[X(z)zk1(zzi)r]z=zi
    • x ∗ ( t ) = ∑ k = 0 ∞ x ( k T ) δ ( t − k T ) x^*(t) = \sum\limits_{k=0}^\infty x(kT)\delta(t-kT) x(t)=k=0x(kT)δ(tkT)

    注意:若有极点z=0,则k=0或1时无法用留数法求得(第五次作业题6.6(3)……)

Z变换性质
  1. 线性性质
  2. 延迟定理
    • Z [ x ( t − n T ) ] = z − n X ( z ) \mathscr Z[x(t-nT)]=z^{-n}X(z) Z[x(tnT)]=znX(z)
    • z − n z^{-n} zn 代表时域中的滞后环节
  3. 超前定理
    • Z [ x ( t + n T ) ] = z n ( X ( z ) − ∑ k = 0 n − 1 x ( k T ) z − k ) \mathscr Z[x(t+nT)]=z^n \left(X(z)-\sum\limits_{k=0}^{n-1}x(kT)z^{-k}\right) Z[x(t+nT)]=zn(X(z)k=0n1x(kT)zk)
  4. 初值定理
    • x ( 0 ) = lim ⁡ z → ∞ X ( z ) x(0) = \lim\limits_{z\rightarrow\infty}X(z) x(0)=zlimX(z)
  5. 终值定理
    • x ( ∞ ) = lim ⁡ z → 1 ( z − 1 ) X ( z ) x(\infty) = \lim\limits_{z\rightarrow1}(z-1)X(z) x()=z1lim(z1)X(z)
  6. 卷积定理
    • X 1 ( z ) X 2 ( z ) = Z [ ∑ m = 0 ∞ x 1 ( m T ) x 2 ( k T − m T ) ] X_1(z)X_2(z)=\mathscr Z\left[ \sum\limits_{m=0}^\infty x_1(mT)x_2(kT-mT) \right] X1(z)X2(z)=Z[m=0x1(mT)x2(kTmT)]
2.5.4 差分方程
定义
  1. n阶线性定常后向差分方程
    • y ( k ) + a 1 ( k − 1 ) + a 2 y ( k − 2 ) + ⋯ + a n y ( k − n ) = b 0 r ( k ) + b 1 r ( k − 1 ) + ⋯ + b m r ( k − m ) y(k)+a_1(k-1)+a_2y(k-2)+\cdots+a_ny(k-n) = b_0r(k)+b_1r(k-1)+\cdots+b_mr(k-m) y(k)+a1(k1)+a2y(k2)++any(kn)=b0r(k)+b1r(k1)++bmr(km)
    • 其中 n ≥ m n\geq m nm ,且系数 a i a_i ai b i b_i bi 均为实常数
    • 多用于描述零初始条件离散系统
    • 延迟定理求解 Z [ x ( t − n T ) ] = z − n X ( z ) \mathscr Z[x(t-nT)]=z^{-n}X(z) Z[x(tnT)]=znX(z)
  2. n阶线性定常前向差分方程
    • y ( k + n ) + a 1 ( k + n − 1 ) + ⋯ + a n y ( k ) = b 0 r ( k + n ) + b 1 r ( k + n − 1 ) + ⋯ + b m r ( k ) y(k+n)+a_1(k+n-1)+\cdots+a_ny(k) = b_0r(k+n)+b_1r(k+n-1)+\cdots+b_mr(k) y(k+n)+a1(k+n1)++any(k)=b0r(k+n)+b1r(k+n1)++bmr(k)
    • n ≥ m n\geq m nm
    • 描述非零初始条件离散系统
    • 超前定理求解 Z [ x ( t + n T ) ] = z n ( X ( z ) − ∑ k = 0 n − 1 x ( k T ) z − k ) \mathscr Z[x(t+nT)]=z^n \left(X(z)-\sum\limits_{k=0}^{n-1}x(kT)z^{-k}\right) Z[x(t+nT)]=zn(X(z)k=0n1x(kT)zk)
求解方法
  1. 迭代法

    • 递推代入
  2. z变换法

    • 利用Z变换,并应用位移定理,转化为求解关于z的代数方程
    • 原理、操作方法类似Laplace变换求解微分方程
  3. 由差分方程求脉冲传函

    Z变换

2.5.5 脉冲传递函数
定义
  • 零初始条件下,离散系统输出Z变换与输入Z变换之比
  • G ( z ) = Z [ y ∗ ( t ) ] Z [ x ∗ ( t ) ] G(z)=\dfrac{\mathscr Z[y^*(t)]}{\mathscr Z[x^*(t)]} G(z)=Z[x(t)]Z[y(t)]
脉冲传递函数的性质
  • 与输入输出序列无关,仅与系统的结构、参数有关
  • 与系统差分方程一一对应
  • 对应z平面零极点图
  • 相当于系统单位脉冲响应序列的Z变换
局限性
  • 不反映非零初始条件下系统响应的全部信息
  • SISO
  • 线性定常离散
串联环节
  • 串联环节间无同步开关
    • G ( z ) = Z [ G 1 ( s ) G 2 ( s ) ⋯ G n ( s ) ] = G 1 G 2 ⋯ G n ( z ) G(z)=\mathscr Z[G_1(s)G_2(s)\cdots G_n(s)]=G_1G_2\cdots G_n(z) G(z)=Z[G1(s)G2(s)Gn(s)]=G1G2Gn(z)
  • 串联环节间有同步开关
    • $G(z)=\mathscr Z[G_1(s)]\mathscr Z[G_2(s)]\cdots\mathscr Z[G_n(s)] = G_1(z)G_2(z)\cdots G_n(z) $
  • 与ZOH串联
    • H 0 ( s ) = 1 − e − T s s H_0(s)=\dfrac{1-e^{-Ts}}{s} H0(s)=s1eTs
    • G ( z ) = ( 1 − z − 1 ) Z [ G 0 ( s ) s ] G(z)=(1-z^{-1})\mathscr Z [\dfrac{G_0(s)}{s}] G(z)=(1z1)Z[sG0(s)]
    • 增加ZOH不改变系统阶数,不改变开环极点,只改变开环零点
线性离散系统的脉冲传递函数
image-20200104214833415
  • 采样: ε ( s ) → ε ∗ ( z ) \varepsilon(s) \rightarrow \varepsilon^*(z) ε(s)ε(z)

  • ε ( z ) = R ( z ) − G 1 G 2 H ( z ) ε ( z ) \varepsilon(z)=R(z)-G_1G_2H(z)\varepsilon(z) ε(z)=R(z)G1G2H(z)ε(z)

  • ε ( z ) R ( z ) = 1 1 + G 1 G 2 H ( z ) \dfrac{\varepsilon(z)}{R(z)}=\dfrac{1}{1+G_1G_2H(z)} R(z)ε(z)=1+G1G2H(z)1

  • Y ( z ) R ( z ) = G 1 G 2 ( z ) 1 + G 1 G 2 H ( z ) \dfrac{Y(z)}{R(z)}=\dfrac{G_1G_2(z)}{1+G_1G_2H(z)} R(z)Y(z)=1+G1G2H(z)G1G2(z)

  • 特征方程: 1 + G 1 G 2 H ( z ) = 0 1+G_1G_2H(z)=0 1+G1G2H(z)=0

  • Remark:

    • 不是每个系统都能写出闭环脉冲传函:如果偏差 ε \varepsilon ε 不是以离散信号的形式输入前向通道的第一个环节,则一般写不出闭环脉冲传函,只能写出输出的表达式。
  • 可以证明:
    Z [ G 1 ( s ) G 2 ( s ) X ∗ ( s ) ] = G 1 G 2 ( z ) X ( z ) \mathscr Z[G_1(s)G_2(s)X^*(s)] = G_1G_2(z)X(z) Z[G1(s)G2(s)X(s)]=G1G2(z)X(z)

    image-20200104215032760

例题:由方框图求输出的Z变换式

image-20200104215505826
2.5.6 离散状态空间表达式
  • { x ( k + 1 ) = G x ( k ) + H u ( k ) y ( k ) = C x ( k ) + D u ( k ) \begin{cases} \boldsymbol{x}(k+1) &=& \boldsymbol{Gx}(k)+\boldsymbol{Hu}(k)\\ \boldsymbol{y}(k)&=& \boldsymbol{Cx}(k)+\boldsymbol{Du}(k) \end{cases} {x(k+1)y(k)==Gx(k)+Hu(k)Cx(k)+Du(k)
  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值