【Godot4.2】极坐标点函数与绘图应用

本文详细介绍了如何在Godot游戏引擎中创建极坐标系统,利用pVector2函数表示和操作极坐标点,展示如何在图形绘制中应用极坐标,包括绘制正多边形和任意多边形,以及利用极坐标加法生成图形顶点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述

在一个平面上基于一个定点,可以创建一个平面直角坐标系,同时也可以创建一个极坐标系。通过极坐标系,可以将平面上的点用极坐标形式描述出来。

本文就记录一下如何在Godot中创建和表示极坐标点,并将其运用于绘图。

极坐标系

极坐标系(polar coordinates)是指在平面内由极点极轴极径组成的坐标系。

  • 在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴
  • 再取定一个单位长度,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从OxOP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ)
  • ρ称为P点的极径θ称为P点的极角

极坐标点函数

在Godot中,我们可以编写函数来表示极坐标点,对应的极坐标系与Godot的坐标系原点重合单位长度一致,而且X轴正方向就是极坐标系的极轴。而且因为Y轴正方向向下,所以采用逆时针角度为正。

有了上面的设定之后,我们就可以用极坐标形式表示屏幕上任意位置。
编写极坐标点函数如下:

# 极坐标点函数 - 通过角度和长度定义一个点
func pVector2(angle:float = 0.0,length:float =0.0) -> Vector2:
	var dir = Vector2.RIGHT.rotated(deg_to_rad(angle))
	return dir * length

可以看到:

  • 代码相当简洁,就是获取X轴正方向Vector2.RIGHT旋转angle度之后再乘以length指定的距离。
  • 其中angle参数采用度而不是弧度的好处是,更直观,也更容易写
  • 因为设定了anglelength的默认值,所以pVector2()返回的就是Vector2(0,0)

测试代码:

extends Node2D

func _draw() -> void:
    # 绘制与X轴正方向夹角30°,距坐标系原点100像素的点
	myCanvas.draw_point(self,pVector2(30,100))

上面的代码:

  • 绘制一个与X轴正方向夹角30°,距坐标系原点100像素的点

绘制效果:
image.png

用极坐标点绘制图形

绘制正多边形

extends Node2D

var points:PackedVector2Array = []   # 图形顶点
var steps := 4.0         # 边数
var start_angle := 0.0   # 起始角度

func _draw() -> void:
	var step_ang := 360.0/steps  # 间隔角度
	# 求取顶点
	for i in range(steps):
		points.append(pVector2(step_ang * i + start_angle,100.0))
	# 将绘图原点设定到(200,200)
	draw_set_transform(Vector2(200,200))
	# 绘制
	draw_colored_polygon(points,Color.AQUAMARINE)

image.png

绘制任意多边形

extends Node2D

var points:PackedVector2Array = []   # 图形顶点

func _ready() -> void:
	# 添加极坐标点
	points.append(pVector2(-45.0,100.0))
	points.append(pVector2(45.0,120.0))
	points.append(pVector2(120.0,50.0))
	points.append(pVector2(160.0,50.0))

func _draw() -> void:
	# 将绘图原点设定到(200,200)
	draw_set_transform(Vector2(200,200))
	# 绘制多边形
	draw_colored_polygon(points,Color.ORANGE_RED)
	# 绘制中心点(绘图原点)
	myCanvas.draw_point(self,Vector2())
	# 绘制从绘图原点到各个顶点的向量
	myCanvas.draw_point_to_points_vectors(self,Vector2(),points)
	# 绘制各个顶点的坐标
	myCanvas.draw_points_pos(self,points)

image.png
可以看到,在构造任意点来绘制多边形时,极坐标点更易于理解和使用,而直角坐标点则更难想象和编写。

极坐标与Vector2的关联

因为pVector2()返回的是Vector2类型,所以实际上我们可以直接对其使用Vector2类型的运算及方法。

一些Vector2类型的常量我们也可以找到对应的pVector2()表示形式:

Vector2常量Vector2实际值pVector2值或表示形式
Vector2.ZEROVector2(0,0)pVector2()或pVector2(0,0)
Vector2.ONEVector2(1,1)pVector2(45,sqrt(2))
Vector2.RIGHTVector2(1,0)pVector2(0,1)
Vector2.LEFTVector2(-1,0)pVector2(180,1)或pVector2(-180,1)
Vector2.TOPVector2(0,-1)pVector2(-90,1)
Vector2.BOTTOMVector2(0,1)pVector2(90,1)

而任意角度单位向量(方向向量):

  • Vector2.RIGHT.rotated(deg_to_rad(45)) = pVector2(45,1)
  • Vector2.RIGHT.rotated(deg_to_rad(60)) = pVector2(60,1)

任意角度方向向量乘以长度:

  • Vector2.RIGHT.rotated(deg_to_rad(45)) * 100 = pVector2(45,100)
  • Vector2.RIGHT.rotated(deg_to_rad(60)) * 100 = pVector2(60,100)

可以看到用极坐标形式,可以大大简化向量旋转和伸缩的表示。

用极坐标加法获取图形顶点

extends Node2D

var points:PackedVector2Array = []   # 图形顶点

func _ready() -> void:
	# 添加极坐标点
	var p1 = pVector2(0,100.0)
	var p2 = p1 + pVector2(-120,100)
	var p3 = p2 + pVector2(180,100)
	var p4 = p3 + pVector2(120,100)
	var p5 = p4 + pVector2(60,100)
	var p6 = p5 + pVector2(0,100)
	
	points.append_array([p1,p2,p3,p4,p5,p6])

func _draw() -> void:
	# 将绘图原点设定到(200,200)
	draw_set_transform(Vector2(200,200))
	# 绘制多边形
	draw_colored_polygon(points,Color.ORANGE_RED)
	# 绘制中心点(绘图原点)
	myCanvas.draw_point(self,Vector2())
	# 绘制从绘图原点到各个顶点的向量
	myCanvas.draw_point_to_points_vectors(self,Vector2(),points)
	# 绘制各个顶点的坐标
	#myCanvas.draw_points_pos(self,points)
	myCanvas.draw_points_idx(self,points)



# 极坐标点函数 - 通过角度和长度定义一个点
func pVector2(angle:float = 0.0,length:float =0.0) -> Vector2:
	var dir = Vector2.RIGHT.rotated(deg_to_rad(angle))
	return dir * length

绘制效果:

image.png

上面的正六边形绘制原理示意图如下:

image.png

这种方式与之前提到的基于旋转和移动的点求取方式有些相似,但是那种方式是基于当前位置和方向。而这里极坐标加减法,其旋转角度始终是与X轴正方向的夹角。

总结

  • 本文描述了如何创建一个与Godot的屏幕坐标系保持一致的假想的极坐标系,并通过pVector2()函数来表示极坐标点
  • pVector2()返回的实际是等价的直角坐标系中的Vector2,因此我们可以直接将它用于图形顶点的表示和绘制
  • pVector2()本质上还是Vector2,所以可以使用Vector2拥有的属性、方法和运算。
  • 极坐标的加减法等同于等价的Vector2进行加减法,所以可以用来获取集合图形顶点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

巽星石

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值