高等数学张宇18讲 第十三讲 无穷级数

例题十三

例13.9  设 f ( x ) f(x) f(x)在点 x = 0 x=0 x=0处存在二阶导数 f ′ ′ ( 0 ) f''(0) f(0),且 lim ⁡ x → 0 f ( x ) x = 0 \lim\limits_{x\to0}\cfrac{f(x)}{x}=0 x0limxf(x)=0。试证明级数 ∑ n = k ∞ ∣ f ( 1 n ) ∣ \sum\limits_{n=k}^\infty\left|f\left(\cfrac{1}{n}\right)\right| n=kf(n1)收敛,其中 k k k为足够大的正整数。

  由 lim ⁡ x → 0 f ( x ) x = 0 \lim\limits_{x\to0}\cfrac{f(x)}{x}=0 x0limxf(x)=0 f ( x ) f(x) f(x)在点 x = 0 x=0 x=0处连续可知 f ( 0 ) = 0 f(0)=0 f(0)=0,且 f ′ ( 0 ) = lim ⁡ x → 0 f ( x ) − f ( 0 ) x − 0 = lim ⁡ x → 0 f ( x ) x = 0 f'(0)=\lim\limits_{x\to0}\cfrac{f(x)-f(0)}{x-0}=\lim\limits_{x\to0}\cfrac{f(x)}{x}=0 f(0)=x0limx0f(x)f(0)=x0limxf(x)=0,于是
lim ⁡ x → 0 f ( x ) x 2 = 洛必达法则 lim ⁡ x → 0 f ′ ( x ) 2 x = lim ⁡ x → 0 f ′ ( x ) − f ′ ( 0 ) 2 ( x − 0 ) = 1 2 f ′ ′ ( 0 ) . \lim\limits_{x\to0}\cfrac{f(x)}{x^2}\xlongequal{\text{洛必达法则}}\lim\limits_{x\to0}\cfrac{f'(x)}{2x}=\lim\limits_{x\to0}\cfrac{f'(x)-f'(0)}{2(x-0)}=\cfrac{1}{2}f''(0). x0limx2f(x)洛必达法则 x0lim2xf(x)=x0lim2(x0)f(x)f(0)=21f(0).
  所以 lim ⁡ n → ∞ ∣ f ( 1 n ) ∣ 1 n 2 = 1 2 ∣ f ′ ′ ( 0 ) ∣ \lim\limits_{n\to\infty}\cfrac{\left|f\left(\cfrac{1}{n}\right)\right|}{\cfrac{1}{n^2}}=\cfrac{1}{2}|f''(0)| nlimn21f(n1)=21f(0)。用比较判别法的极限形式,级数 ∑ n = k ∞ 1 n 2 \sum\limits_{n=k}^\infty\cfrac{1}{n^2} n=kn21收敛,故 ∑ n = k ∞ ∣ f ( 1 n ) ∣ \sum\limits_{n=k}^\infty\left|f\left(\cfrac{1}{n}\right)\right| n=kf(n1)收敛。(这道题主要利用了比较判别法求解

例13.12  已知级数 ∑ n = 1 ∞ u n \displaystyle\sum\limits_{n=1}^\infty u_n n=1un绝对收敛,判断 ∑ n = 1 ∞ u n 2 1 + u n 2 \displaystyle\sum\limits_{n=1}^\infty\cfrac{u_n^2}{1+u_n^2} n=11+un2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值