2d激光重定位系列(一)AMCL:算法&源码&参数 相关资源整合

本文汇总了多种关于AMCL(自适应蒙特卡洛定位)的资源与解析,包括原理介绍、代码解读等内容。AMCL作为机器人定位的重要手段,通过粒子滤波方式实现对机器人位置的准确估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2d激光重定位目前常用的开源方案是amcl、cartographer、robot_location等,同时还有icp等scan-map match的方法。综合来说,amcl相对而言实际部署起来较为稳定,如果是cartographer、icp一类的scan-map match的方法某些情况下会发生跳变位姿很难快速自动修正回来。这篇博客会整理一些关于AMCL资源并写一下自己的看法,希望能和大家交流。
(2021/5/26,添加目前我在网上找到的各种关于amcl的干货,自己的开发遥遥无期~)

0、网上资源整合

1、“白夜行的狼”写的关于amcl原理和源码讲解https://haoqchen.site/2018/05/06/amcl-code/
2、ethan_guo写的原理性描述,感觉讲的挺形象,可以总体的有个认识https://blog.csdn.net/ethan_guo/article/details/81809054?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522161458539116780264036828%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=161458539116780264036828&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduend~default-3-81809054.pc_search_result_before_js&utm_term=amcl#commentBox
3、acml中odom的数据处理,有代码的解读和相关原理的解释,比较全面https://blog.csdn.net/qq_17032807/article/details/97650380?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.control&dist_request_id=eab63cc4-2160-4d18-bca2-537b9487cf1a&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.control
4、偏重代码解读https://blog.csdn.net/shoufei403/article/details/102454304?utm_medium=distribute.pc_relevant.none-task-blog-baidujs_title-8&spm=1001.2101.3001.4242
5、原理讲解,是个系列https://blog.csdn.net/qq_33742147/article/details/105489516
6、代码注释https://blog.csdn.net/gwplovekimi/article/details/112771428?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.control&dist_request_id=1328602.11393.16149236638602681&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.control
7、私人博客,里面讲解的比较细致,强烈推荐https://gaoyichao.com/Xiaotu/?book=turtlebot&title=amcl%E7%9A%84%E6%80%BB%E4%BD%93%E4%B8%9A%E5%8A%A1%E9%80%BB%E8%BE%91

0、基本原理、数据订阅发布等基础内容

amcl在导航中扮演了机器人定位器的角色。它订阅了"/scan"和"/tf"来获取激光传感器的参数和里程计的坐标变换,通过主题"/map"获取环境地图。使用粒子滤波的方式进行机器人定位, 并通过主题"/amcl_pose"和"/particlecloud"发布对机器人位姿的估计以及粒子的位姿。

### 激光重定位技术的实现方法 激光重定位技术在机器人自主导航领域中扮演着至关重要的角色。它主要用于解决机器人在运行过程中可能出现的定位丢失问题,以及任务初始阶段的快速定位需求。以下是几种常见的激光重定位技术及其具体实现方法: #### 1. 基于点云匹配的方法 激光SLAM系统通常依赖于不同时刻获取的两片点云数据之间的匹配与比对来完成定位。这种方法的核心在于通过比较当前时刻的扫描数据与地图中的已有数据,找到最佳匹配位置,从而恢复机器人的姿态和位置信息[^1]。 #### 2. AMCL(Adaptive Monte Carlo LocalizationAMCL种基于粒子滤波的概率定位算法,适用于已知地图条件下的机器人位姿估计。该方法通过维护组加权粒子集合表示机器人可能的位置分布,并根据观测模型更新这些粒子权重,最终选出最有可能的真实位姿作为定位结果。AMCL特别适合处理大范围内的局部定位问题,能够有效应对环境变化带来的挑战[^5]。 #### 3. Cartographer算法的改进版本 为了提高传统Cartographer算法在复杂场景中的表现,研究者提出了多种增强型方案。例如,针对定位偏移和耗时较长的问题,可以通过引入额外特征约束或者优化回环检测机制等方式改善系统的鲁棒性和实时性[^3]。这种增强后的算法不仅保留了原版的优点,还显著提升了面对动态障碍物或其他干扰因素的能力[^4]。 #### 4. 工程化应用中的其他策略 除了上述理论框架外,在实际工程项目里还会运用些特定技巧来辅助完成高效可靠的重定位功能。比如预设地标库用于加速搜索过程;结合视觉传感器提供补充线索帮助区分相似区域等等[^2]。 ```python # 示例代码展示如何加载并初始化个简单的AMCL模块 (伪代码) class AMCL: def __init__(self, map_data): self.map = map_data self.particles = [] def initialize_particles(self, num_particles=100): for _ in range(num_particles): particle = { 'pose': random_pose(), # 随机生成初始状态 'weight': 1 / num_particles } self.particles.append(particle) def update(self, observation): new_weights = [] for p in self.particles: likelihood = compute_likelihood(observation, p['pose'], self.map) new_weight = p['weight'] * likelihood new_weights.append(new_weight) normalize_weights(new_weights) # 归化权重 resampled_particles = resample(self.particles, new_weights) self.particles = resampled_particles def estimate_position(self): best_particle = max(self.particles, key=lambda x:x['weight']) return best_particle['pose'] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值