李雅普诺夫稳定

0. 参考文献

【1】https://zhuanlan.zhihu.com/p/58738073
这个文章写的已经非常透彻了,没什么好说的,本文全文摘抄

1. 什么是平衡点

看一个倒立摆的例子:
在这里插入图片描述
在这里插入图片描述

这个倒立摆的状态方程第一行,没什么好说的,状态量就角度和角速度。
第二行,对小球进行受力平衡分析把 J t J_t Jt乘过去就比较容易看出来了

在这里插入图片描述
注意上面这一段,将输入设成0,也就是0输入系统,会自然进行摆动
因为很多量都是常数,所以作者自己造了一个火箭:

在这里插入图片描述
在这里插入图片描述
这里其实也可以拿手画,就是比较复杂
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
上面关于平衡点的解释还是非常直观的,状态方程左侧都是状态的导数,右侧都是状态的函数,我们只要在图上选一个状态点,根据状态点,求出在该状态下的,状态的导数,就是那个图上的箭头。同样的,我们要找平衡点,就是让导数等于零,然后取求解状态
在这里插入图片描述
上面这一段,还有下面的描述是不是有点问题啊?不是竖直放置不稳定,是竖直向上放置不稳定,竖直向下放置稳定
下面这一段中不是火箭水平躺着,是火箭竖直向下

在这里插入图片描述

2. 什么是李雅普诺夫稳定

在这里插入图片描述

李雅普诺夫稳定性理论研究的是在扰动下平衡点的稳定性问题。

受到扰动,停留在“附近”
在这里插入图片描述
受到扰动,“收敛”到平衡点
在这里插入图片描述
受到“任何”扰动,“收敛”到平衡点
在这里插入图片描述
受到扰动,偏离平衡点
在这里插入图片描述
在这里插入图片描述

2.1 李雅普诺夫稳定

在这里插入图片描述
这是一个线性系统
在这里插入图片描述
真的这么容易吗,看来又要复习了

在这里插入图片描述
在这里插入图片描述
下面这个关键的来了
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
上面这个例子是里面的向外走,外面的向里走,共同走到同一个圈上
在这里插入图片描述
在这里插入图片描述

2.2 渐进稳定

在这里插入图片描述在这里插入图片描述

在这里插入图片描述

2.3 大范围渐进稳定

在这里插入图片描述
在这里插入图片描述
注意下面这两个结论
在这里插入图片描述

2.4 不稳定

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3. 李雅普诺夫第一法

在平衡点附近线性化
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4. 李雅普诺夫第二法

注意这个标量函数的一些条件:首先这个标量函数是状态量的函数,并且在x!=0时是非负的,如果这个标量函数对时间的求导小于等于0。那么就是李雅普诺夫稳定的

注意这个标量函数,要我们自己取找才行,并且找到一个就行,不用找很多
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注意看上面,这个李雅普诺夫函数是我们自己选的,然后自己去试试导数行不行

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值