- lcm(a,b)=a×bgcd(a,b)
1. 1m,1n 的最小公倍数
1m,1n 的最小公倍数是 m,n 的最大公约数的倒数。
比如 {110,210,⋯,1010} 与 {115,215,⋯,1515} 的公共部分。
10 与 15 的最大公约数是 5,则 1/10 与 1/15 的最小公倍数是 1/5 ,
则公共部分是: {1/5,2/5,3/5,4/5,5/5} 。
2. 最小公倍数的求法
S 个数的最小公倍数,为这 S 个数中所含素因子的最高次方之间的乘积。
求 756,4400,19845,9000 的最小公倍数?
因
- 756=2*2*3*3*3*7,4400=2*2*2*2*5*5*11,
- 19845=3*3*3*3*5*7*7,9000=2*2*2*3*3*5*5*5,
这里有素数 2,3,5,7,11.2 最高为 4 次方 16,3 最高为 4 次方 81,5最高为 3 次方 125,7 最高为 2 次方 49,还有素数 11.得最小公倍数为16*81*125*49*11=87318000.
3. 计算
两个数的最大公因数是 15,最小公倍数是 90,求这两个数分别是多少?
15⋅a=x15⋅b=y}⇒15⋅a⋅b=90⇒a⋅b=6所以, a=1,b=6 ,或者 a=2,b=3
两个自然数的积是 360,最小公倍数是 120,两个数各是多少?
易算二者的最大公约数为 360/120=3,则:
3⋅a=x3⋅b=y}⇒3⋅a⋅b=120⇒a⋅b=40a,b=5,8