
矩阵分析
文章平均质量分 76
五道口纳什
wx公众号/B站:五道口纳什
展开
-
向量的叉乘
1. 注意叉乘的顺序与方向原创 2018-02-11 21:48:09 · 1051 阅读 · 0 评论 -
方阵的迹(trace)及其微分(导数)
1. 基本性质Tr(A)=Tr(AT)\text{Tr}(\mathrm A)=\text{Tr}(\mathrm A^T)Tr(ABC)=Tr(BCA)=Tr(CAB)\text{Tr}(\mathrm {ABC})=\text{Tr}(\mathrm {BCA})=\text{Tr}(\mathrm {CAB}) 因此如果 A\mathrm A 和 C\mathrm C 互逆的话,三者相乘原创 2016-11-24 21:48:17 · 20990 阅读 · 5 评论 -
从 Jacobian 矩阵、Hessian 矩阵到 Theano 实现
T.grad(cost, wrt),一般接收两个参数,第一个参数表示需要求导的函数,放在深度学习的背景下就是代价函数,wrt(with respect to)表示代价函数所关于的参数(通俗地讲,就叫自变量,f(x)f(x)表示关于xx的函数ff)。T.grad的第一个参数必须是标量。>>> import thenao>>> import theano.tensor as T>>> x = T.d原创 2015-12-09 11:34:40 · 4007 阅读 · 0 评论 -
Scatter matrix(散布矩阵)
nn 个 mm 维的样本,Xm×n=[x1,x2,…,xn]X_{m\times n}=\left[\mathrm x_1,\mathrm x_2,\ldots,\mathrm x_n\right],样本均值定义为:x¯=1n∑i=1nxi\bar {\mathrm x}=\frac1n\sum_{i=1}^n\mathrm x_i散列矩阵定义为如下的半正定矩阵:S=∑j=1n(xj−x¯)(x原创 2016-11-24 19:35:33 · 5506 阅读 · 0 评论 -
矩阵分块与矩阵乘法的理解
1. 矩阵乘法单位矩阵是正定矩阵,zTIz=zTz=∥z∥2 z^{\mathrm{T}}I z =z^Tz=\|z\|^2原创 2016-11-09 12:49:30 · 7590 阅读 · 0 评论 -
矩阵手册
xnx_n表示特征向量,是一个列向量(column vector),XX是特征向量组成的样本矩阵,每一列表示一个样本(一次观测值,observation)。 ∑nxnxTn=XXT\sum_nx_nx_n^T=XX^T 也即(整个和式可用内积表示): (x1,x2,…,xN)⋅⎛⎝⎜⎜⎜⎜⎜xT1xT2⋮xTN⎞⎠⎟⎟⎟⎟⎟=XXT\begin{equation}\begin{pmatrix原创 2015-12-01 09:24:14 · 3352 阅读 · 0 评论 -
方阵和的行列式、方阵行列式的和
考虑同阶方阵 A,BA,B,问它们和的行列式与它们各自行列式的和是否相等:|A+B|=?|A|+|B||A+B|\;=?\; |A|+|B| 结论是二者是不相等的。行列式的性质,我们知道,若行列式某 i 列(行)的元素都是(都可转化为)两数之和,则等于两个行列式之和。原创 2016-09-18 09:47:41 · 8883 阅读 · 0 评论 -
正定矩阵(positive definite matrix)
为什么要研究正定矩阵? 矩阵分解——三角分解(Cholesky 分解) 因为正定矩阵有一些美好的性质,比如存在唯一的 LDULDU 分解,如果为实对称的话,可进一步分解为 GGTGG^T,而矩阵的三角分解带来的的巨大的计算复杂度的下降。而样本的协方差矩阵正是一种实对称正定矩阵。原创 2016-03-14 22:11:25 · 2444 阅读 · 0 评论 -
向量与向量空间(vector space)
在维基百科关于 向量空间 的介绍中,并未提及构成向量空间的「向量」的具体形态,即它未必是我们通常理解的3维或者 nn 维的实数空间,只是提及对加法和数乘封闭。这里引入一个新的向量空间,比如:all 3×33\times 3 matrices. 也即矩阵也是一种向量,只不过需要要求矩阵满足加法和数乘,显然满足,即两个 3×33\times 3 的矩阵相加仍然是 3×33\times 3 的矩阵,一个原创 2016-01-13 23:37:39 · 11003 阅读 · 0 评论 -
explanatory variable(independent vs dependent)、design matrix
design matrix(设计矩阵) 是统计学上的概念,一般标记为 XX,是由一组对象的解释变量(explanatory variables)构成的矩阵。1. explanatory variables 刻画的是属性列(feature column),也即一个样本、一个对象都可视为,或者抽象为,符号化为,一个多维向量,向量的每一个 component 表示一定的特征,比如身高,体重等信息,起到原创 2016-11-24 11:52:45 · 14422 阅读 · 0 评论 -
matlab 求解 Ax=B 时所用算法
x = A\B;x = mldivide(A, B);matlab 在这里的求解与严格的数学意义是不同的,如果 A 接近奇异,matlab 仍会给出合理的结果,但也会提示警告信息;如果 A 为方阵,如果解存在的话,x = A\B 的解就是 Ax=B(代入就会成立)如果 A 不为方阵,返回的是 Ax=B 的最小二乘解;1. A 和 B 是 full 型矩阵(一般的矩阵) 2. A 为原创 2016-11-18 17:21:26 · 13306 阅读 · 1 评论 -
希尔伯特矩阵(Hilbert matrix)
1. 定义由 Hilbert 1894 年引入的一个方阵,矩阵在各个位置上的值为:Hij=1i+j−1H_{ij}=\frac1{i+j-1}显然 Hij=HjiH_{ij}=H_{ji},这是一个对称矩阵,由单位分数(unit fraction,分子是 1,分母是正整数)。原创 2016-11-12 12:24:17 · 23885 阅读 · 3 评论 -
线性方程组
1. 解的情况齐次线性方程组 Ax=0Ax=0 有无穷多解,其中 Am×nA_{m\times n} m < n原创 2016-09-10 23:00:59 · 918 阅读 · 0 评论 -
矩阵分析相关证明(一) —— 正交与投影
αu原创 2016-12-09 11:40:59 · 2448 阅读 · 0 评论 -
基变换与坐标变换
1. 过渡矩阵与基变换2. 坐标变换原创 2017-01-03 17:07:12 · 10050 阅读 · 1 评论 -
可逆矩阵的逆
首先判断其行列式(|A||A|)是否等于 0,如果等于 0,就说明不可逆 ;1. 伴随矩阵在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。逆矩阵和伴随矩阵只差一个系数;伴随矩阵与原矩阵形成映射关系;AA 的伴随矩阵通过代数余子式定义。原创 2016-09-09 11:10:07 · 1675 阅读 · 0 评论 -
gemm() 与 gesvd() 到矩阵求逆(inverse)(根据 SVD 分解和矩阵乘法求矩阵的逆)
可逆方阵 AA 的逆记为,A−1A^{-1},需满足 AA−1=IAA^{-1}=I。在 BLAS 的各种实现中,一般都不会直接给出 matrix inverse 的直接实现,其实矩阵(方阵)的逆是可以通过 gemm()和gesvd()操作得到。实值可逆方阵 AA,其 SVD 分解如原创 2017-07-08 10:35:15 · 4279 阅读 · 0 评论 -
酉矩阵(unitary matrix)
复方阵 UU 称为酉矩阵,如果满足:U∗U=UU∗=IU^*U=UU^*=I换句话说,矩阵 UU 的共轭转置 U∗U^* 就是 UU 的逆矩阵。U∗=U−1U^*=U^{-1}1. unitary matrix 保持内积不变⟨Ux,Uy⟩=⟨x,y⟩原创 2017-05-15 23:41:19 · 11182 阅读 · 0 评论 -
Toeplitz matrix 与 Circulant matrix
之所以专门定义两个新的概念,在于它们特殊的形式,带来的特别的形式。1. Toeplitz matrix对角为常数;n×nn\times n 的矩阵 AA 是 Toepliz 矩阵当且仅当,对于 Ai,jA_{i,j} 有:Ai,j=Ai+1,j+1=ai−jA_{i,j}=A_{i+1,j+1}=a_{i-j}⎡⎣⎢⎢⎢⎢⎢⎢afghibafghcbafgdcbafedcba⎤⎦⎥⎥⎥⎥⎥⎥原创 2017-05-15 19:12:08 · 5944 阅读 · 0 评论 -
二次型(求梯度) —— 公式的简化
1. 基本等式原创 2016-11-03 12:00:55 · 15231 阅读 · 3 评论 -
对偶空间(dual linear space)
对偶空间的定义对偶空间的向量与对偶空间的基;原创 2017-01-03 22:07:10 · 14366 阅读 · 1 评论 -
从张量积(tensor product)到多重线性代数(multilinear algebra)
从张量积(tensor product)到多重线性代数原创 2017-03-23 10:50:53 · 9321 阅读 · 0 评论 -
行列式(determinant)的物理意义及性质
1. 物理(几何)意义detA=output areainput area\det A=\frac{\text{output area}}{\text{input area}}首选,矩阵代表的是线性变换(linear transformation)。上式说明一个矩阵的行列式(detA\det A)几何意义上,代表着,变换后的输出区域的面积与变换前的输入区域的面积之比。考虑一个二维的平面直角坐标系原创 2017-03-23 10:08:07 · 13781 阅读 · 0 评论 -
稀疏编码(sparse code)与字典学习(dictionary learning)
Dictionary Learning Tools for Matlab.1. 简介字典 D∈RN×KD\in \mathbb R^{N\times K}(其中 K>NK>N),共有 kk 个原子,x∈RN×1x\in \mathbb R^{N\times 1} 在字典 DD 下的表示为 ww,则获取较为稀疏的 ww 的稀疏逼近问题如下表示原创 2017-03-29 15:19:15 · 11891 阅读 · 2 评论 -
常见矩阵求导
矩阵微分(matrix derivatives)1. 字典学习中的最小二乘法使用迭代求解的思路,优化上述问题,固定 WW,上述问题就转换为单目标原创 2017-03-29 17:14:53 · 1623 阅读 · 0 评论 -
四个基本子空间
零空间;原创 2017-03-29 10:32:54 · 1628 阅读 · 0 评论 -
矩阵分解(matrix factorization)
1. 基本概念 针对高维空间中的数据集,矩阵分解通过寻找到一组基及每一个数据点在该基向量下的表示,可对原始高维空间中的数据集进行压缩表示。原创 2017-03-28 22:59:09 · 2929 阅读 · 0 评论 -
矩阵微分(matrix derivatives)
关于矩阵求导,得到的导数则是矩阵形式;关于矢量求导,得到的导数则是矢量形式;关于标量求导,得到的仍是标量形式。共存在 6 种形式的矩阵导数: 1. 关于向量的导数标量对向量求导原创 2017-02-17 09:44:42 · 7343 阅读 · 0 评论 -
线性方程组的求解(C++)
1. 最佳求解方案Most efficient way to solve a system of linear equations求解形如 Ax=b 的最佳方式原创 2016-10-19 19:04:59 · 4119 阅读 · 0 评论 -
正定矩阵(definite matrix)
1. 基本定义在线性规划中,一个对称的 n×nn\times n 的实值矩阵 MM,如果满足对于任意的非零列向量 zz,都有 zTMz>0z^TMz> 0.更一般地,对于 n×nn\times n 的 Hermitian 矩阵(原矩阵=共轭转置,aij=a¯jia_{ij}=\bar a_{ji},或者 A=AT¯¯¯¯¯A=\overline {A^{T}}),对于任何的非零列向量 zz,z⋆Mz原创 2016-11-09 11:54:14 · 6187 阅读 · 0 评论 -
Gram 矩阵性质及应用
v1,v2,…,vnv_1,v_2,\ldots,v_n 是内积空间的一组向量,Gram 矩阵定义为: Gij=⟨vi,vj⟩G_{ij}=\langle v_i,v_j\rangle,显然其是对称矩阵。1. 基本性质半正定(positive semidefinite)2. 应用如果 v1,v2,…,vnv_1,v_2,\ldots,v_n 分别是随机向量,则 Gram 矩阵是协方差矩阵;原创 2016-10-24 17:30:21 · 16471 阅读 · 0 评论 -
uBLAS——Boost 线性代数基础程序库 (二)
uBLAS——Boost 线性代数基础程序库 (1)简化命名空间namespace ublas = boost::numeric::ublas;(2)矩阵定义及初始化#include <boost\numeric\ublas\matrix.hpp>int main(int, char**){ ublas::matrix<double> A(3, 3); for (unsign原创 2016-03-15 15:30:35 · 4174 阅读 · 0 评论 -
矩阵分解——三角分解(二)
三角矩阵的性质Cholesky 分解的计算公式原创 2016-03-15 13:11:34 · 2018 阅读 · 0 评论 -
矩阵分解——三角分解(Cholesky 分解)
(1)一个对角元素都是1的下三角矩阵,称为单位下三角矩阵。(2)上(下)三角矩阵的乘积仍是上(下)三角矩阵;(3)一般来说,矩阵的三角分解不唯一。(4)实对称正定矩阵 AA,Δk>0\Delta_k>0(k=1,2,⋯,nk=1,2,\cdots,n)三角分解如果方阵 AA 可分解为一个下三角矩阵 LL 和一个上三角矩阵 UU 的乘积,则称 AA 可作三角分解或 LU(LR)LU(LR)原创 2016-03-14 22:06:05 · 34229 阅读 · 2 评论 -
uBLAS——Boost 线性代数基础程序库 (三)
row() vs matrix_row<> ,column() vs matrix_column<>原创 2016-03-15 21:29:46 · 3364 阅读 · 0 评论 -
uBLAS——Boost 线性代数基础程序库
uBLAS:Basic Linear Algebra Subprograms,基于 Boost 的 C++ 模板类库。(1)其在 Boost 位于的命名空间(namespace)为:boost::numeric::ublas原创 2016-03-14 23:00:31 · 4293 阅读 · 0 评论 -
使用 uBLAS 进行实对称正定矩阵的 Cholesky 分解
Cholesky 分解理论矩阵分解——三角分解(Cholesky 分解) 矩阵分解——三角分解(二) 注:只有实对称矩阵才有 Cholesky 分解理论。已知实对称正定矩阵 AA,其 Cholesky 分解形式为:A=LLTA=LL^T,LL 为下三角矩阵,计算 L=(ℓij)L=(\ell_{ij}) 的递推公式为:ℓij=⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎛⎝aij−∑k=1j−1原创 2016-03-15 16:33:11 · 2615 阅读 · 0 评论 -
从高斯消元到矩阵的三角分解(LU)
本文主要介绍以 Gauss 消去法为根据导出的矩阵的三角(或 LU)分解。原创 2016-02-02 10:40:47 · 4422 阅读 · 2 评论 -
矩阵运算的重新理解
1. 矩阵向量乘法 1.1 矩阵分块 1.2 从线性组合的观点理解矩阵分块,以及矩阵向量乘法原创 2016-02-01 22:27:39 · 2789 阅读 · 0 评论 -
随机矩阵(stochastic matrix)与 PageRank
随机矩阵实际上是一种特殊的非负矩阵(non-negative matrix),非负矩阵是指矩阵元素都是非负(non-negative)的,当然非负要与正矩阵(Positive Matrix,所有元素都大于0)进行细微的区分。References[1] 随机矩阵(stochastic matrix)原创 2016-02-01 14:42:44 · 12382 阅读 · 0 评论