
趣味数学
文章平均质量分 96
程序员需要懂数学吗?程序员不需要懂数学吗?本专栏从一系列有趣的数学问题出现,探索其在生活中的应用,其在编程中的提供的无与伦比的解决方案。
五道口纳什
wx公众号/B站:五道口纳什
展开
-
概率、随机数、随机数生成函数(面试题)
相关的面试中涉及的随机数生成、以及概率的有关问题的讨论,请参阅 如何通过投掷一枚硬币产生各种概率。解决这类题有两大窍门:0-1区间上的均匀分布,和 if 相结合实现对某一概率的要求;多次采样,并不限制为1次;适当地取舍;首先来看一道笔试题: 实现某一随机数生成函数 f()f(),返回0的概率是60%,返回1的概率是40%(有偏置型硬币)。import random def bias_原创 2016-01-09 21:08:50 · 5717 阅读 · 3 评论 -
硬币等于骰子(在统计学意义上)
硬币和骰子是统计学家们的心头好。没有硬币,统计学家根据骰子也能创造出来一枚硬币,没有骰子,统计学家们也能根据硬币创造出来一个骰子。如何通过投掷一枚硬币产生各种概率概率、随机数、随机数生成函数(面试题) 硬币等于骰子,are you kidding me?我读书少,你不要骗我。 是在统计学上了,物理上显然是不同的。 此话怎讲?统计学意义上的硬币,其实是产生 {12 ,12 } \{\fra原创 2016-01-21 19:27:37 · 2665 阅读 · 0 评论 -
身份证号第18位的计算
身份证号每一位号码的意义 首选需要声明两点,第18位为x:其实对应与编码系统中的10(十),因为进制的关系了;第18位的取值是前面17位通过一定的编码规则(ISO 7064:1983.MOD 11-2)生成出来的,而非随机。你说不随机就不随机了?下面我们通过Python,实现对第18位数字的生成(根据前面17位)。首先来看ISO 7064:1983.MOD 11-2 的计算方法(见中华人民共原创 2016-01-31 10:20:48 · 6991 阅读 · 0 评论 -
概率,悖论,以及理性人原则(python实现)
用Python实现对概率P的定义热身问题掷骰子增强版P接受对事件的断言两儿童悖论问题1年长者是男孩两儿童都是男孩的概率问题2至少一个是男孩两个都是男孩的概率理性人原则问题3 一个男孩生在周二两个都是男孩的概率可视化睡美人悖论蒙提霍尔悖论11非等概率输出概率分布问题4一个男孩生在2月29两个都是男孩的概率仿真未完待续在这篇手札里,我们将涉及概率论的基本原理,以及它们的pyt翻译 2015-10-19 13:54:40 · 5673 阅读 · 2 评论 -
点乘和叉乘及其物理意义(C++STL实现)
一些错误观念的澄清,比如数学意义上的点积和叉积并不对应matlab程序中的.*(按位相乘)和*(矩阵乘法)内积的物理意义一种向量到标量的映射两向量的夹角的计算两向量是否正交的判断两向量的相似性(similarity)的度量叉积的意义如何使用C++语言(STL容器,运算符重载):表示向量计算内积计算叉积计算模长计算两向量的夹角计算点到直线的距离prerequisites内积(i原创 2015-11-14 20:42:35 · 36763 阅读 · 3 评论 -
从排列与组合的python实现到"生日问题"的解释
在 数论及Python实践一文中,我们介绍了组合的基本定义以及一些常规实现方法,并未充分发挥python语言的优势,本文我们从reduce函数的角度(从这个角度我们应当恢复reduce正宫娘娘的地位,因为在python3中Guido将reduce从系统内置函数降格为functools中的函数),重新实现给出排列组合的各自实现,以及据此给出”生日问题”的概率解释。(nk)=n!k!(n−k)!(nk)原创 2015-12-17 10:01:57 · 4113 阅读 · 0 评论 -
三局两胜还是五局三胜?
已知如下的竞赛规则: 假定有甲、乙两个乒乓球运动员参加比赛,已知甲的实力强于乙。现有两个备选的竞赛规则,”三局两胜制”和”五局三胜制”。请问,这种情况下:选手甲应该争取哪一种规则对自己有利?自然是比较两种规则下各自获胜的概率: “三局两胜制”: f(p)=p2+2(1−p)p2=p2(3−2p)f(p)=p^2+2(1-p)p^2=p^2(3-2p) “五局三胜制”: g(p)=p3+3(原创 2015-12-17 11:48:52 · 6818 阅读 · 1 评论 -
被平均("统计平均")的陷阱
在统计平均的调查方法下: 公司100人,患糖尿病的有9人,则患病率为9%;研究所150人,患糖尿病的有18人,患病率为12%; 是否说明,研究所的糖尿病患病率要比公司高? 公司 研究所 100 9 9% 150 18 12%我们将年龄结构考虑进去(事实上,糖尿病的患病率也确实跟年龄有密切的联系): 年龄结构 公司原创 2015-12-17 12:00:27 · 2196 阅读 · 0 评论 -
假设检验——抽样调查的结论依赖于样本量的大小
随机非随意概率破玄机无序引有序统计解迷离 - 严加安 现在有一种说法:抽烟会降低患老年痴呆的风险。为检验这一说法是否可信,设想某医疗机构在某个城市从65-75岁的人群中进行随机抽样调查了1000个人,分别统计抽烟者和非抽烟者老年痴呆症患病人数。结果显示:250人是抽烟者,其中老年痴呆患者10人750非抽烟者,其中老年痴呆患者45人两原创 2015-12-17 12:37:25 · 3266 阅读 · 0 评论 -
泊松分布的理解与Python仿真
我们首先从一个实例出发,来分析缘何泊松分布在经济社会生活中如此频繁地出现和使用。已知某家小杂货店,平均每周售出两个水果罐头,请问该水果店的最佳库存量是多少?(或者这么问,如果你是商家,你该如何储备货物?)假定不存在季节因素,可以近似认为,该问题满足以下三个条件:顾客购买水果罐头是小概率事件;购买水果罐头的顾客之间是独立的,也即不会互相依赖或者影响;顾客购买水果罐头的概率是稳定的;原创 2015-12-17 21:27:12 · 22345 阅读 · 1 评论 -
关于e的等式及相关证明
ee的定义式是一切的起点: e=limn→∞(1+1n)ne=\lim_{n\to\infty}(1+\frac1n)^n证明limn→−∞(1+1n)n=e\lim\limits_{n\to-\infty}(1+\frac1n)^n=elimn→−∞(1+1n)n=limn→−∞[(1−1−n)−n]−1=limn→∞1(1−1n)n=limn→∞(nn−1)n=limn→∞(1+1n−1)n=原创 2015-12-18 17:18:10 · 7518 阅读 · 0 评论 -
斐波那契数列与黄金分割比以及矩阵形式推导
数学上,斐波那契数列以递归的形式进行定义: F 0 =0F 1 =1F n =F n−1 +F n−2 \begin{split}&F_0=0\\&F_1=1\\&F_n=F_{n-1}+F_{n-2}\end{split}注意,递归的形式实现较为简单明了,当然在编程实践时,并不推荐递归的实现方式,因为存在大量的重复计算,斐波那契的优化实现不是本文的重点,如有兴趣,请参阅 每周一原创 2016-01-23 12:35:40 · 6537 阅读 · 0 评论 -
数学小魔术——猜数字
数学小魔术——神奇的二进制 请你任意猜想一个三位数,把这个三位数乘以 91 的乘积的最后三位告诉我,我们很快猜出你心中所想的那个三位数是多少?我们以对方心中所想的 789 为例,则对方计算出 789×91=71799789\times 91=71799,并把结果的三位,也即 799 告诉我。看起来,这么做似乎损失了不少信息,让我没法反推出原来的数。不过,我仍然有办法:只需要把对方告诉我的结果原创 2016-01-29 17:56:40 · 12998 阅读 · 0 评论 -
数学小魔术——神奇的二进制
小魔术——猜数游戏心中默想一个小于50的两位数接着,我问你在以下的6张卡片中,哪几张卡片中有你想的那个数?(为什么是6张卡片,和50有什么关系)最后,我不费吹灰之力就能猜出这个数。原创 2016-01-19 15:02:00 · 25529 阅读 · 5 评论