
群论-抽象代数
五道口纳什
wx公众号/B站:五道口纳什
展开
-
群论初步
Group Theory1. 群与群论 只有一个代数运算的系统叫做“群”;群在抽象代数中具有基本的重要地位,许多代数结构,包括环、域和模等可以看作是在群的基础上添加新的运算和公理而形成的。设 GG 是一个非空集合, ⋅\cdot 是它的一个二元运算,如果满足以下条件:(1) 封闭性:若 a,b∈Ga,b\in G,则存在唯一确定的 c∈Gc\in G 使得 a⋅b=ca\cdot b原创 2016-07-20 15:20:04 · 4215 阅读 · 0 评论 -
范畴及范畴论的理解
范畴(category)不仅仅是一种数学语言,更是一种哲学观点。代数思想的精髓在于:抽象,但是简洁。概括性极高。0. 预备概念态射:morphism,最常见的这种过程的例子是在某种意义上保持结构的函数或映射。在集合论中,例如,态射就是函数,在群论中,它们是群同态,而在拓扑学中,它们是连续函数。在泛代数(universal algebra)的范围,态射通常就是同态。 对态射和它们定义于其间的结构原创 2017-02-24 15:55:51 · 10152 阅读 · 2 评论 -
多项式运算
1. 加法和乘法运算原创 2017-01-03 18:46:36 · 1043 阅读 · 2 评论 -
解方程 —— 简单三次方程
x3+x−2=0x^3+x-2=0三次没有直接的求根公式,一次和二次有,因此,如果可以的话,将其整理成 1 次和 2 次相乘的形式。 x3+x−2=x3−1+x−1=(x−1)(x2+x+2)=0x^3+x-2=x^3-1+x-1=(x-1)(x^2+x+2)=0 ⇒ 1原创 2016-11-19 10:32:27 · 2667 阅读 · 0 评论 -
加、减、乘、除(四则运算)
0 在加法中扮演的角色,和 1 在乘法中扮演的角色十分相像 群论的观点就是 0 是加法的单位元,1 是乘法的单位元;原创 2016-07-20 15:27:02 · 3000 阅读 · 0 评论