
拓扑-图论
五道口纳什
wx公众号/B站:五道口纳什
展开
-
多面体的研究
1. 四面体四面体,也叫三棱锥;但正三棱锥不等于正四面体; 正四面体必须每个面都是正三角形正三棱锥是锥体中底面是正三角形,三个侧面是全等的等腰三角形的三棱锥。四面体有 4 个顶点(Vertex),也显然都有 4 个面,4 个顶点的任意 3 个点都可以构成一个面,也即:(43)=4\binom43=42. 六面体六面体,共 8 个顶点,12 条棱,它的面的个数是怎么算出来的呢?上底面:原创 2016-08-27 11:11:03 · 1499 阅读 · 0 评论 -
拓扑学(代数拓扑学)的有趣应用
代数几何学又是一次数形结合的典范,一次从现象到本质的探索。1. 绳子谜题 墙有两个钉子, 按照通常的方法将画挂上去,如图所示,当一个钉子掉下 来时, 画还会挂在另一个钉子。问题: 如何将画挂起来,使得拔掉其中任何一个钉子, 画就会掉下来? 顺时针缠绕第一个钉子一周记作a,逆时针缠绕第一个钉子一周记作 a−1a^{-1}. 顺时针缠绕第二个钉子一周记作b, 逆时针缠绕第二个钉子一周记作原创 2016-08-27 11:52:49 · 10114 阅读 · 0 评论 -
绘图的艺术
1. 三维的展现 三维的展现,借助于阴影;原创 2016-08-29 18:19:44 · 978 阅读 · 0 评论 -
拓扑学初步
0. 基本概念 & 定义同胚:在拓扑学中,两个流形,如果可以通过弯曲、延展、剪切(只要最终完全沿着当初剪开的缝隙再重新粘贴起来)等操作把其中一个变为另一个,则认为两者是同胚的。如:圆和正方形是同胚的(8 与 B 也是同胚的),而球面和环面就不是同胚的。考虑三个物体,碗、杯子(带柄)、甜甜圈,哪两者之间是同胚的?不是肉眼看上去,更为接近的碗与杯子。而是杯子与甜甜圈: 1. 正六边形通过两个上原创 2016-08-25 15:27:53 · 5129 阅读 · 0 评论 -
哥尼斯堡七桥问题
如下的七座桥: 1735 年,大数学家欧拉证明,不存在这样一条线路。并概念性的意识到:桥梁之间距离是无关(有关时,施以权重)真正重要的是桥梁如何连接的;这正是拓扑学。拓扑学意义上的简化,将 A、B 两座岛,缩为一点,两岸也分别缩为一点,如下图所示,这样既简化了问题,也不会影响问题的求解,和原始问题同解。原创 2016-07-28 00:14:54 · 5456 阅读 · 1 评论 -
Topological Spaces(拓扑空间)
拓扑空间的定义有多种形式,通过 open sets(开集)的形式定义是最为常见的拓扑空间定义形式。原创 2017-04-25 11:51:44 · 2870 阅读 · 0 评论 -
open ball、closed ball 与 open set、closed set(interior point,limit point)、dense set
在拓扑学上,open set(开集)是对实数轴(real line)上开区间(open interval)的拓展。 红色圆盘,蓝色圆圈红色点集即为一种 open set,蓝色点集则为 boundary set,红色点集和蓝色点集的并构成原创 2017-04-25 11:02:37 · 11064 阅读 · 0 评论