
总结
五道口纳什
wx公众号/B站:五道口纳什
展开
-
机器学习算法的流程总结
应当选择哪一种距离度量方式?KNN K值如何确定?也即如何确定超参。 problem-dependent,具体问题具体分析;try what hyperparameters work best on test set. 并非是一个好主意,测试集(模型还未见过的数据)最好的用途在于作为模型泛化能力的评价,应当十分节俭地使用;0. 数据集的切分可采用如下方式对数据集进行切分:原创 2016-10-23 18:47:17 · 1024 阅读 · 0 评论 -
辨异 —— 机器学习概念辨异、模型理解
1. Multi-class、Multi-labelMulti-class Classification:多分类问题,即在多于两个类别中选择一个;Multi-label Classification:判断一个样本是否同时属于多个不同类别;原创 2016-10-25 18:06:37 · 1301 阅读 · 0 评论 -
数据科学(data science)概览
0. 硬件平台设计一种分层的体系结构: 自下到上依次是:硬件层分布式系统层分布式管理层分布式处理层应用层;1. 总论原创 2016-12-29 16:29:17 · 1192 阅读 · 0 评论 -
基于梯度的权重更新优化迭代算法
有时间参数 tt 参与的一般都为迭代式的算法gt 表示当前时刻的梯度;γ,β:常数;原创 2017-03-20 18:44:37 · 1380 阅读 · 0 评论 -
树 —— 总论
真二叉树(proper binary tree):不含一度结点的树(只有 0 度和 2 度的结点);原创 2016-09-16 15:22:21 · 1101 阅读 · 0 评论 -
机器学习 vs. 深度学习
1. bias/vairanceTrend # 1:Scale driving Deep Learning process.原创 2016-12-07 15:36:06 · 940 阅读 · 0 评论 -
机器学习、深度学习概念术语的理解
1. retina layer、receptive fields m-1 层,也即最开始的层,代表 retina layer 视网膜层(表示整个网络结构的输入)m 层,具有宽度为 3 的 receptive fields,也因此 m 层的神经元只连接着其邻接层(retina layer,m-1 层)中的 3 个神经元;原创 2016-11-02 15:33:01 · 2617 阅读 · 0 评论 -
算法(algorithm)、模型(model)与框架(framework)
模型对应的数学公式,公式中往往有待学习得到的参数,因此在进行训练或者学习时,首先初始化这部分参数(0 或标准正太分布);算法则是一套处理的流程;引入新的记号(变量);对参数进行update;算法执行结束,意味着最终的参数也学习得到;框架,可以 embed 各种不同的求解算法;原创 2016-11-23 11:41:36 · 13734 阅读 · 1 评论 -
性能优化—— 代码优化
At the heart of all mathematics are numbers.原创 2016-11-05 23:15:42 · 1236 阅读 · 0 评论 -
机器学习算法时间复杂度的考虑
1. 最小二乘法min∥Ax−b∥22\min \|Ax-b\|_2^2存在解析解,x⋆=(ATA)−1ATbx^\star=(A^TA)^{-1}A^Tb时间复杂度正比于 n2kn^2k(其中 A∈Rk×nA\in \mathbb R^{k\times n}) kk 表示样本的数量,nn 表示 features/regressors原创 2016-11-08 00:29:21 · 5428 阅读 · 1 评论 -
机器学习、深度学习实战细节(batch norm、relu、dropout 等的相对顺序)
1. 分类和预测评估:准确率;速度;健壮性;可规模性;可解释性;原创 2016-10-30 01:39:11 · 8955 阅读 · 1 评论