
数论
五道口纳什
wx公众号/B站:五道口纳什
展开
-
【数论】—— 多边形数的计算(三角形数,五边形数)
1. 和式1+3+5+⋯+(2n−1)=n21+3+5+⋯+(2n−1)=n21+3+5+\cdots+(2n-1) = n^22. 五边形数五边形数的几何形式如下: 如何计算 P100P100P_{100}?将各个图形中的点拆分成如下左右两个部分: P1=0+1P1=0+1P_1=0+1P2=1+(1+3)P2=1+(1+3)P_2=1+(1+...原创 2018-08-08 23:21:05 · 4637 阅读 · 0 评论 -
卡特兰(Catalan)数列
卡特兰数又称卡塔兰数,英文名 Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列。以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名,其前几项为 : 1, 1, 2, 5, 14, 42, 132, 429原创 2016-09-19 23:42:56 · 1669 阅读 · 0 评论 -
数论基本定理及应用(二)
数论基本定理 10≡1(mod3)⇓10n≡1(mod3)⇓10n−1≡0(mod3)10\equiv 1\quad(\mathrm{mod}\; 3)\\\Downarrow\\10^n\equiv 1\quad (\mathrm{mod}\;3)\\\Downarrow\\10^n-1\equiv 0\quad (\mathrm{mod}\;3)用的是幂运算性质,也即如果 a≡b(m原创 2016-01-26 17:06:55 · 1135 阅读 · 0 评论 -
奇数与偶数
偶数的平方还是偶数;奇数的平方还是奇数;偶数之间的乘法还是偶数;奇数之间的乘法还是奇数;所谓偶数还是奇数,分别的关键在于是否存在 2 的因子。原创 2016-06-21 22:34:16 · 2996 阅读 · 0 评论 -
十进制的研究(二)
十进制研究1. ab 与 ba、abc 与 cba原创 2016-09-23 00:07:45 · 952 阅读 · 0 评论 -
阶乘的性质
1. 基本性质(1)除 1 之外的所有数的阶乘都是偶数。(2)≥5\geq 5 的阶乘末尾至少一个 0 (3)≥6\geq 6 的阶乘都能被 9 整除,阶乘的各位数字之和也能被 9 整除原创 2016-06-26 12:03:48 · 10412 阅读 · 0 评论 -
乘法、除法与 0
从因子(factor)的角度理解:乘法是不断吸收因子的过程,吸收的因子都是乘数的因子。除法则是不断释放因子(对于被除数)的过程(前提是能够整除),释放的因子正是除数的因子。原创 2016-06-21 22:38:37 · 1699 阅读 · 0 评论 -
+-×÷美丽的等式
case 1⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪(1+1+1)×37=111(2+2+2)×37=222(3+3+3)×37=333(4+4+4)×37=444(5+5+5)×37=555(6+6+6)×37=666(7+7+7)×37=777(8+8+8)×37=888(9+9+9)×37=999\left\{\begin{array}{l}\left(1+1+1\right)\times 37=原创 2016-06-17 16:09:13 · 1210 阅读 · 0 评论 -
完全数(亏数、盈数)、三角形数、棱锥体数、正方形数
1. 完全数与亏数、盈数1.1 完全数如果一个数恰好等于它的因子之和,则称该数为“完全数”。各个小于它的约数(真约数,列出某数的约数,去掉该数本身,剩下的就是它的真约数)的和等于它本身的自然数叫做完全数(Perfect number),又称完美数或完备数。 例如:第一个完全数是6,它有约数1、2、3、6,除去它本身6外,其余3个数相加,1+2+3=6。第二个完全数是28,它有约数1、2、4、7、1原创 2016-06-22 21:22:29 · 4423 阅读 · 0 评论 -
约数的计算
1. 全部正约数、负约数;原创 2016-09-12 22:45:11 · 1665 阅读 · 0 评论 -
被 7 整除的数
法 1用 7 作除数时,10 的整数次方的余数如下:10010^0:110110^1:310210^2:210310^3:610410^4:410510^5:510610^6:110710^7:310810^8:210910^9:6判断方法:把每一位数字乘上该位所对应的余数,如果它们加起来等于 7 的整数倍,就肯定能被 7 整除。如:4312 ⇒ 4*6 + 3*2 + 1*原创 2016-06-20 12:19:44 · 5610 阅读 · 0 评论 -
被 5 整除的数
被 7 整除的数 被 9 整除1. 被 5 整除的数的特点个位数字是 0/5换句话说,个位数字是 0/5 的数,都存在 5 的因子;原创 2016-08-21 18:00:12 · 1625 阅读 · 0 评论 -
平方数的研究
1. 基本性质1.1 奇数个因子除完全平方数外,一般的整数的因子都是偶数个(包括 1 和它自身)。道理是显然的,因子一般是成对出现的,只有当该数是完全平方数时,其二次方根只有孤单的一个。2. 典型计算100 以内的完全平方数:102=10010^2=100,共 10 个(1、2、3、4、5、6、7、8、9、10)500-1000 内的完全平方数:500−−−√<23,1000−−−−√<32\sq原创 2016-06-25 21:01:23 · 1128 阅读 · 0 评论 -
被 6 整除
被 6 整除,也即具有 2 和 3 的因子,具有 2 的因子说明为偶数具有 3 的因子说明各位之和能被 3 整除 10≡1mod310n≡1mod310n−1|3 \begin{split}& 10\equiv1\mod 3\\& 10^n\equiv1\mod 3\\&10^n-1|3 \end{split} 而任意一个多位数(十进制位值系统) abc, 都可描述为加和的形式,ab原创 2016-09-10 19:09:50 · 1767 阅读 · 0 评论 -
整数、区间与区间端点(三)
整数、区间与区间端点 整数、区间与区间端点 (二)1. 单端点的情况 单端点的情况下,终点减去起点(而不加 1)。(1)银行的排队系统比如当前叫到 25 号,你是 30 号,则共需经历 30-25 = 5(25\26\27\28\29) 五个人的服务时间(当然会分开在不同的窗口)。原创 2016-07-03 16:10:47 · 2111 阅读 · 0 评论 -
开根号
一个数能够开根号的前提是,其全部因子,必须成对出现(偶数次),而不可以是奇数次。一个偶数如果能够开根号(是偶数,则存在 2 的因子,因为能够开根,则其因子需成对出现),则其开根号的结果一定也是偶数;一个奇数如果能够开根号(不存在 2 ),则其开根号的结果一定也是奇数;原创 2016-06-21 23:34:42 · 4363 阅读 · 0 评论 -
【数论】—— 整数质因子分解
Efficient program to print all prime factors of a given numberimport mathdef number_factorize(num): prime_factors = [] # 如果整数为偶数,其素因子为 2 的个数; while num % 2 == 0: prime_factors...原创 2018-08-08 22:55:25 · 1736 阅读 · 1 评论 -
因子(factor)的研究
1. 基本性质只有平方数有奇数个因子(包括 1 和自身),而与是否为数本身的奇偶性无关。因为因子是成对出现的,除非是完全平方数。1:1,4:1、2、4,9:1、3、92:1、2,3:1、3原创 2016-06-24 23:43:18 · 1763 阅读 · 0 评论 -
(多项式)因式分解定理(Factor theorem)与多项式剩余定理(Polynomial remainder theorem)(多项式长除法)
(多项式的)因式分解定理(factor theorem)是多项式剩余定理的特殊情况,也就是余项为 0 的情形。0. 多项式长除法(Polynomial long division)Polynomial long division - Wikipedia 1. 因式分解定理Factor theorem该定理表达的是,多项式 f(x)f(x) 存在因子 x−kx-k 当且仅当 f(k)=0f(k原创 2017-08-13 10:20:31 · 18378 阅读 · 0 评论 -
因式分解的研究
1. an−1a^n-1an−1=(a−1)[1+a+a2+⋯+an−1]a^n-1=\left(a-1\right)\left[1+a+a^2+\cdots+a^{n-1}\right]1+a+a2+⋯+an−1=an−1a−11+a+a^2+\cdots+a^{n-1}=\frac{a^n-1}{a-1}原创 2016-07-15 17:41:15 · 1420 阅读 · 0 评论 -
亲和数(220/284)
亲和数(amicable number) 由费马发现,亲和数指的是一对数,其中每一个数是另一个数的因数之和。毕达哥拉斯学派给出了一非凡的发现,220 和 284 是亲和数。220 的因数为:1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110,和为 284;284 的因数为:1, 2, 4, 71, 142,和为 220;也正是凭借着这一奇妙的性质,220 和 284原创 2017-07-04 21:16:09 · 6074 阅读 · 0 评论 -
素数(质数)与合数的研究
素数是合数的基因,如果 NN 是合数,则 N=Pα11Pα22⋯Pαmm,m≥1,P1,P2,…,PmN=P_1^{\alpha_1}P_2^{\alpha_2}\cdots P_m^{\alpha_m},m\geq 1, P_1,P_2,\ldots,P_m 是互异素数,α1,⋯,αm\alpha_1,\cdots,\alpha_m 是正整数,其中 P1<P2<⋯<PmP_1<P_2<\cdots原创 2016-06-17 22:29:02 · 2113 阅读 · 0 评论 -
有理数的性质及应用
有理数:能表达两个整数比值 ab\frac ab 的那些数;0. 全体有理数可数的证明 可数就是可与一个可数的集合(空间)成映射; 1. 有理数的两条重要性质实数理论是建立在有理数的基础上的,为了建立实数理论,我们应当先弄清有理数的有关性质,关于有理数有两条性质是重要的:(1)稠密性(2)不完备性全体有理数集合的一个重要性质就是有理数集在数轴上的“稠密性”(有理数在数轴上处处稠密)原创 2016-06-13 16:45:17 · 3143 阅读 · 0 评论 -
数的分解、分解质因数
def primes(n): x, l = 2, [] while True: if x > n: break if n % x == 0: n //= x l.append(x) x -= 1 x += 1 return l>> p原创 2016-06-29 22:17:30 · 1818 阅读 · 0 评论 -
实数的认识
1. 常见定义规范小数:若一个有尽小数 a0.a1a2…apa_0.a_1a_2…a_p 在第 k 位之后不全为 0 或 9,则称其为规范小数。原创 2016-09-02 16:09:06 · 1302 阅读 · 0 评论 -
根号 2 是无理数的证明
首先声明一些基本事实:偶数的平方还是偶数;奇数的平方还是奇数;偶数之间的乘法还是偶数;奇数之间的乘法还是奇数;所谓偶数还是奇数,分别的关键在于是否存在 2 的因子。原创 2016-06-21 22:32:16 · 5558 阅读 · 0 评论 -
求通项
1. 1, 0, 1, 0, 1, 0, 1…简单地,1, -1, 1, -1, 1, -1…,其通项为,(−1)n+1(-1)^{n+1}an=1+(−1)n+12a_n=\frac{1+(-1)^{n+1}}2原创 2016-08-15 10:15:20 · 960 阅读 · 0 评论 -
梅森素数与孪生素数
1. 定义2n−12^n-1 这种形式的素数就是梅森素数,2n−1=11…1n−12^n-1=\underbrace{11\ldots 1}_{n-1}2. 举例3=22−13=2^2-17=23−17=2^3-131=25−131=2^5-1127=27−1127=2^7-13. 相关证明(1)如果 2n−12^n-1 是素数(梅森素数),则 nn 也是素数。nn原创 2016-07-15 17:15:59 · 2745 阅读 · 0 评论 -
友好数
220 与 284220:1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220 284:1, 2, 4, 71, 142, 284而把这些除了数本身的因子加起来,220: 1+2+4+5+10+11+20+22+44+55+110 = 284 220=1+2+4+71+142 : 284原创 2016-10-07 00:00:24 · 1405 阅读 · 0 评论 -
素数分布定理
对正整数 xx,记 π(x)\pi(x) 为不大于 xx 的素数个数。第 nn 个素数 p(n)p(n) 的渐进估计为,p(n)∼nlnnp(n)\sim n\ln n,它也给出从整数中抽到素数的概率。从不大于 n 的自然数随机选一个,它是素数的概率大约是 1/lnn1/\ln n(也即 nn 个整数,素数的个数大概会有,一个十分粗糙的估计,nlnnn\ln n)。 这定理的式子於 1798 年法原创 2016-10-06 18:34:47 · 6632 阅读 · 1 评论 -
周期、周期型事件
整除运算与取模运算 时钟、取模与环 周期与取模运算有着天然的联系。一天:24 小时一周:7 天一年:12 个月天干:10 个地支:12 个时区:24 个生肖:12 个1. 与 12 有关的一年:12 个月地支:12 个生肖:12 个金陵:12 钗原创 2016-06-25 20:52:50 · 2577 阅读 · 0 评论 -
无理数的认识
无理数也是无穷无尽的,它们比起有理数来得多得多。1. 从 2√\sqrt 2 开始我们从 2√\sqrt 2 开始,就可以构造无穷多个无理数:1+2√1+\sqrt 2,2+2√2+\sqrt 2,3+3√3+\sqrt 3,…\ldots,也都是无理数;22√2\sqrt 2,32√3\sqrt 2,42√4\sqrt 2,…\ldots,也都是无理数;12+2√\frac12+\sqrt原创 2016-08-18 12:23:29 · 1807 阅读 · 0 评论 -
素数的判断(二)
素数的判断1. 899 是素数吗?试除就笨了。899=900−1=302−12=(30+1)(30−1)=31×29899=900-1=30^2-1^2=\left(30+1\right)\left(30-1\right)=31\times 29原创 2016-06-23 13:13:02 · 1091 阅读 · 0 评论 -
整除的判定
数论基本定理1. 被 3/9 整除各位之和是否能被 3/9 整除2. 被 5 整除个位数是否为 5/03. 被 2/4/8 整除2:最后 1 位是否能被 2 整除4:最后 2 位是否能被 4 整除8:最后 3 位是否能被 8 整除应用20!=1×2×3×⋯×20=24329020081△664000020!=1\times 2\times 3\times \cdots\times 20=2原创 2016-06-26 11:59:37 · 1579 阅读 · 0 评论 -
数字的推理
1. 九九乘法表告诉我们的 如果知道两数乘积的结果,可根据其中一个数的个为的数,猜测出来另外一个数个位的数,进而推测出进位的情况。原创 2016-06-26 11:46:22 · 1247 阅读 · 0 评论 -
2 的 n 次幂
2n=2⋅2n−1=2n−1+2n−12^n=2\cdot 2^{n-1}=2^{n-1}+2^{n-1}证明或推翻: a3+b4=c5a^3+b^4=c^5 没有正整数解。证:因为: 224+224=225⇒(28)3+(26)4=(25)52^{24}+2^{24}=2^{25} ⇒ \left(2^8\right)^3+\left(2^6\right)^4=\left(2^5\原创 2016-06-23 15:21:25 · 1723 阅读 · 0 评论 -
数论基本定理及应用(四)
数论基本定理 数论基本定理及应用(二) 数论基本定理及应用(三) 1. 一些小定理1.1 成比例ba=dc⇒b+aa=d+cc\frac ba=\frac dc ⇒ \frac{b+a}a=\frac{d+c}c证明极为简单,两边同时加 1.原创 2016-06-08 15:16:57 · 1159 阅读 · 0 评论 -
19 年7 闰
一年 360 天,一月 30 天,则一年 12 个月。如此计算是十分粗糙的。秦始皇统一六国之后,根据长期观测的数据,定一年为 36514365\frac{1}{4} 天,一月为 2949994029\frac{499}{940} 天。依据此结果颁布了统一的历法,叫颛顼历(zhuan xu,号高阳氏)。这样一年有: 651429499940=12719\frac{65\frac{1}{4}}{29原创 2016-06-24 10:46:19 · 1415 阅读 · 0 评论 -
10 的 n 次幂
2 的 n 次幂 10n=10⋅10n−1=5⋅10n−1+5⋅10n−110^n=10\cdot 10^{n-1}=5\cdot10^{n-1}+5\cdot 10^{n-1}原创 2016-06-23 22:42:51 · 3182 阅读 · 0 评论 -
数论基本定理及应用(三)
数论基本定理 数论基本定理及应用(二) 质数mm 为质数,对于任何 z∈Zmz\in \mathbb Z_m(Zm\mathbb Z_m 表示对 mm 取余后的整数),对于任何 z≢0z\not \equiv 0,存在唯一一个 z−1∈Zmz^{-1}\in \mathbb Z_m,使得 zz−1≡1(modm)zz^{-1}\equiv 1 \pmod m。注:这里的 z−1z^{-1} 表示数原创 2016-01-30 15:57:35 · 1335 阅读 · 0 评论