
信号与系统
文章平均质量分 51
五道口纳什
wx公众号/B站:五道口纳什
展开
-
matlab 信号与系统(一)—— 上采样(Upsampling)和下采样(Downsampling)
我们使用因子 p=2p=2,对一维信号 xx 进行上采样(一般为插入 0),则采样后的信号的长度为:(len(x) - 1) * (p-1) + len(x) == len(x)*p - p + 1x = 1:5;p = 2;y = zeros(length(x)*p - p + 1, 1);y(1:p:length(x)*p) = x;降采样则是以一定间隔的对原始信号进行切片(slice):原创 2016-05-01 15:06:09 · 20799 阅读 · 1 评论 -
信号空间
1. ℓ2(Z)\ell^2(Z):能量有限将一个点表示为无穷维空间(由一组基表征)的一个数列,ℓ2(Z)\ell^2(Z):Z={0,±1,±2,…}Z = \{0, \pm1,\pm2,\ldots\}:表示所有的整数;表示一个线性空间,由很多点构成的线性空间;其内的任意一点可以表示为,P(,…,x−1,x0,x1,…,)P(,\ldots,x_{-1}, x_0, x_1, \ldots,原创 2017-01-18 11:58:33 · 2522 阅读 · 0 评论 -
傅里叶分析(matlab)
一维信号的傅里叶变换:fft(t)二维图像的傅里叶变换:fft2(t)fft2(x) ⇒ fft(fft(x)’)’1. frequency spectrum(频谱)分析图像的频率是表征图像中灰度变化剧烈程度(导数)的指标,是灰度在平面空间上的梯度。大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。原创 2016-11-13 19:07:03 · 3910 阅读 · 0 评论 -
复数的认识与理解
复数 ⇒ 数从一维变成了二维平面;F(w)=F[f(t)]=∫∞−∞f(t)e−iwtdtF(w)=\mathcal F[f(t)]=\int_{-\infty}^{\infty}f(t)e^{-iwt}dt复数在傅里叶变换中起到的作用主要是将正弦波和余弦波组合起来(eix=cosx+isinxe^{ix}=\cos x+i\sin x),只是一种组合而已(一种数学 trick,或者数学家的魔原创 2016-11-14 20:04:01 · 6979 阅读 · 1 评论 -
圆周卷积(circular convolution)
1. 定义与概念圆周卷积也叫循环卷积, 2. 实现(matlab)以圆周的形式卷积两个信号:>> z = ifft(fft(x).*fft(y));原创 2016-11-14 00:52:32 · 7704 阅读 · 0 评论 -
二维高斯滤波器(gauss filter)的实现
我们以一个二维矩阵表示二元高斯滤波器,显然此二维矩阵的具体形式仅于其形状(shape)有关:def gauss_filter(kernel_shape):为实现二维高斯滤波器,需要首先定义二元高斯函数:原创 2017-03-24 20:45:52 · 6119 阅读 · 1 评论 -
正弦信号、余弦信号与复指数信号(欧拉公式)
生活中不存在复数,但是《信号与系统》《数字信号处理》偏偏离不开复指数 e(jwt),这就涉及到复指数在推导和运算时的一些重要性质,以及其与正弦余弦信号的关系。原创 2017-01-18 12:57:54 · 55500 阅读 · 1 评论 -
傅里叶级数与复的傅里叶级数、傅里叶变换
傅里叶级数的三角函数形式,傅里叶级数的复指数形式,原创 2017-05-15 23:17:21 · 2385 阅读 · 0 评论 -
matlab 时频分析(短时傅里叶变换、STFT)
短时傅里叶变换,short-time fourier transformation,有时也叫加窗傅里叶变换,时间窗口使得信号只在某一小区间内有效,这就避免了传统的傅里叶变换在时频局部表达能力上的不足,使得傅里叶变换有了局部定位的能力。原创 2017-05-16 11:38:17 · 55631 阅读 · 0 评论 -
模拟信号、数字信号,信号是如何被处理的?
实际中遇到的信号大多为模拟信号,这些在时间和幅度上都连续变化的信号利用含有源电路和无源电路元件的电网络进行处理。这种途径称为模拟信号处理(ASP,Analog Signal Processing),例如无线电和电视接收机就属于这一类。 它们能够利用加法器,乘法器和逻辑元件的数字硬件或专用微处理器进行处理。然而需要将模拟信号转换成一种适合于数字硬件的某种形式,这种形式的信号称为数字信号。这种信号原创 2016-10-29 18:29:22 · 7980 阅读 · 0 评论 -
狄拉克函数(Dirac delta function)
狄拉克函数是十分近代且重要的函数。在理论和实践中都扮演着十分重要的作用。原创 2017-01-09 21:51:07 · 21213 阅读 · 2 评论 -
信号、系统与滤波器设计(matlab)
Lowpass Digital Differentiators原创 2016-11-17 16:14:08 · 1982 阅读 · 0 评论 -
卷积及卷积的性质与应用
卷积有一种模糊(粗粒度)的效果,这种模糊化(忽视掉一些不必要的细节,在加上 maxpooling 的存在,又会去捕捉最显著的特征,这种忽略次要目标,突出重要目标)。也就是 CNN 天然具有的性质,当其应用在 Text(文本处理)时,比如 fraud detection,欺诈检测,一个人抄袭别人的答案,但又机智地做了一些修改的动作(会被 conv,忽视),但一些核心的东西,两人之间一样的内容(执行...原创 2015-12-04 12:01:28 · 18274 阅读 · 1 评论 -
卷积(convolution)与相关(correlation)(matlab 实现)
1. 卷积(convolution)输出 y(n)y(n) 是作为在 x(k)x(k) 和 h(n−k)h(n-k)(反转和移位)重叠之下的样本和求出的。考虑下面两个序列:x(n)=[3,11,7,0,−1,4,2],−3≤n≤3x(n)=[3, 11, 7, 0, -1, 4, 2], \quad -3\leq n\leq 3h(n)=[2,3,0,−5,2,1],−1≤n≤4h(n)=[2,原创 2016-11-11 20:36:09 · 8423 阅读 · 1 评论 -
离散时间信号常见函数的实现(matlab)
1. 单位样本序列原创 2016-11-11 23:43:51 · 5322 阅读 · 0 评论 -
帕斯瓦尔定理(Parseval's theorem)
∫∞−∞|x(t)|2dt=12π∫∞−∞|X(ω)|2dω=∫∞−∞|X(2πf)|2df∑n=−∞∞|x[n]|2=12π∫π−π|X(eiϕ)|2dϕ∑n=0N−1|x[n]|2=1N∑k=0N−1|X[k]|2\begin{split}&\int_{-\infty}^\infty | x(t) |^2 \, dt = \frac{1}{2\pi} \int_{-\infty}^\i原创 2016-11-14 01:08:32 · 34881 阅读 · 3 评论 -
DTFT、DFT、FFT
对于一般的周期信号可以用一系列(有限个或者无穷多了)正弦波的叠加来表示。这些正弦波的频率都是某一个特定频率的倍数如5hz、2*5hz、3*5hz……(其中的 5hz 叫基频)。这是傅立叶级数的思想。所以说周期信号的频率是离散的。 而且,对于周期信号有一个特点,信号的周期越长,信号的基频越小 T∝1fT\propto \frac1f。 非周期信号可以看作周期无穷大的周期信号,那么它的基频就是无穷小,这原创 2016-11-14 01:11:45 · 1686 阅读 · 0 评论 -
线性滤波器(linear filter)与非线性滤波器(non-linear filter)
1. 均值滤波器与中值滤波器image processing - Difference between linear and non linear filter - Signal Processing Stack Exchange最为典型的均值滤波器是线性滤波器,而中值滤波器是非线性滤波器。判断一个函数(滤波器)线性非线性的最重要的手段就是,如下的等式是否成立:原创 2016-11-02 16:45:17 · 12541 阅读 · 0 评论 -
采样定理
0. 信号与系统基本概念信道(information channel):指传送信息(从 A 地到 B 地)必须通过具体的媒质;频带(frequency band):对信道而言,频带就是允许传送的信号的最高频率与允许传送的信号的最低频率这之间的频率范围(当然要考虑衰减必须在一定范围内);带宽(bandwidth),信号所占据的频带宽度;在被用来描述信道时,带宽是指能够有效通过该信道的信号的最大频原创 2016-11-14 19:18:16 · 7723 阅读 · 3 评论 -
经典滤波器的设计
1. Gabor Filters傅里叶分解是一种度量图像纹理特征的方式,但它是对图像全局(global)的度量。Gabor 滤波器是一种获取图像频率成分的局部化(local)的方法;原创 2016-11-02 19:02:56 · 1283 阅读 · 0 评论 -
常见信号的模拟仿真(matlab)(spike signal)
1. 一维信号构造离散时间向量;Fs = 1000; % sampling frequency,采样频率T = 1/Fs; % sampling period,采样周期L = 1000; % Length of Signalt = (0:L-1)*T; % time vector构造信号S原创 2016-11-13 21:42:26 · 8264 阅读 · 0 评论 -
hann function
hann function 是一种离散型窗函数,定义如下:w(n)=12(1−cos(2πnN−1))=sin2(πnN−1)w(n)=\frac12\left(1-\cos\left(\frac{2\pi n}{N-1}\right)\right)=\sin^2\left(\frac{\pi n}{N-1}\right)窗口的长度为 L=N+1; hann function 以及其傅里叶响应为原创 2016-11-22 11:29:16 · 2153 阅读 · 0 评论 -
Python 傅里叶分析
0. 一维序列卷积np.convolve,注意 same/valid参数下(默认为 full),序列卷积出的结果的长度:>> np.convolve([1, 2, 3], [0, 1, 0.5])array([ 0. , 1. , 2.5, 4. , 1.5])>> np.convolve([1, 2, 3],[0, 1, 0.5], 'same')...原创 2018-04-01 21:35:26 · 2750 阅读 · 1 评论