
证明
文章平均质量分 54
五道口纳什
wx公众号/B站:五道口纳什
展开
-
【等价转换】—— 整数的变换
1. 整数与幂的关系n=2m+ℓn=2m+ℓn=2^m+\ell其中 2m2m2^m 是不超过 nnn 的 2 的最大次幂; 2m≤n<2m+12m≤n<2m+12^m\leq n\lt 2^{m+1}ℓ<2mℓ<2m\ell \lt 2^m, ℓ=n−2mℓ=n−2m\ell=n-2^m如 10=2^3+2,ℓ=2ℓ=2\ell=2 是 nnn 关于 ...原创 2018-08-08 21:29:00 · 1121 阅读 · 0 评论 -
红黑树相关定理及其证明
红黑树有一条性质要求:如果一个节点为红色的,则它的两个子节点都是黑色。这保证了:从根到叶节点(不包括根节点)的任何一条路径上都至少有一半的节点是黑色的。(红黑树的性质还要求:对每一个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点)。0. 明确一些基本概念树的深度和高度: 树的深度是从根节点开始(其深度为1)自顶向下逐层累加的,而高度是从叶节点开始(其高度为1)自底向上逐层原创 2017-07-23 12:40:32 · 5400 阅读 · 2 评论 -
随机变量统计独立性的相关证明
1. 和的期望和方差两随机变量 x,z 统计独立,证明下列两个等式:原创 2017-07-19 16:38:53 · 6968 阅读 · 0 评论 -
【概率证明】—— sum and product rules of probability
1. sum and product rules of probability⎧⎩⎨p(x)=∫p(x,y)dyp(x,y)=p(x|y)p(y)\left\{\begin{split}&p(x)=\int p(x, y)dy\\&p(x,y)=p(x|y)p(y)\end{split}\right.sum rule of probability 的积分符号自然可以换成 ∑\sum 求和原创 2017-07-21 18:35:07 · 2409 阅读 · 0 评论 -
Beta 分布归一化的证明(系数是怎么来的),期望和方差的计算
1. Γ(a+b)Γ(a)Γ(b)\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}:归一化系数Beta(μ|a,b)=Γ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1\text{Beta}(\mu|a,b)=\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\mu^{a-1}(1-\mu)^{b-1}面对这样一个复杂的概率密度函数,我们不原创 2017-07-21 15:17:09 · 17581 阅读 · 0 评论 -
【证明】—— 斐波那契
1. 黄金分割率与其共轭数x+1=x2⇒⎧⎩⎨⎪⎪⎪⎪ϕ=1+5√2ϕ^=1−5√2x+1=x^2 ⇒ \left\{\begin{split}\phi=\frac{1+\sqrt5}{2}\\\hat\phi=\frac{1-\sqrt5}{2}\end{split}\right.也即像 ϕ,ϕ^\phi, \hat\phi 的数,其实满足:{ϕ+1=ϕ2ϕ^+1=ϕ^2\left原创 2017-07-30 10:55:04 · 1203 阅读 · 1 评论 -
均匀分布(uniform distribution)期望的最大似然估计(maximum likelihood estimation)
maximum estimator method more known as MLE of a uniform distribution[0,θ][0, \theta] 区间上的均匀分布为例,独立同分布地采样样本 x1,x2,…,xnx_1, x_2, \ldots, x_n,我们知均匀分布的期望为:θ2\frac\theta2。首先我们来看,如何通过最大似然估计的形式估计均匀分布的期望。均匀分布的原创 2017-07-12 15:26:50 · 54628 阅读 · 2 评论 -
数学归纳法在数据结构与算法分析设计中的应用
最简单和常见的数学归纳法是证明当n等于任意一个自然数时某命题成立。证明分下面两步:证明当 n= 1 时命题成立。假设 n=m 时命题成立,那么可以推导出在 n=m+1 时命题也成立。(m代表任意自然数)1. 图设 G=(V, E) 为一个有向图或无向图,假定 BFS 以给定结点 s∈Vs\in V 作为源节点在图 G 上运行。则在 BFS 终结时,对于每个结点 v∈Vv\in V,BFS 计原创 2017-07-01 19:46:31 · 1578 阅读 · 0 评论 -
数学归纳法的相关证明
范德蒙行列式计算方法的证明:范德蒙行列式计算以应用直线分割平面:直线分割平面问题(数学归纳法)原创 2016-09-26 12:11:42 · 1782 阅读 · 0 评论 -
二项式定理等价变换与简单推论
本文主要有关二项式定理的有个相关证明。原创 2017-01-18 21:15:44 · 2745 阅读 · 0 评论 -
数学归纳法证明时间复杂度
1. T(n)=1+∑j=0n−1T(j)T(n)=1+\sum\limits_{j=0}^{n-1}T(j)欲证明 T(n)=2nT(n)=2^n(为了简化问题的方便,这里忽略了问题的背景信息,边界条件:T(0)=1T(0)=1)。已知边界条件:T(0)=20=1T(0)=2^0=1,由数学归纳法,化结论为条件,则有:T(n)====1+∑j=0n−1T(j)1+∑j=0n−12j1+20+21+原创 2017-07-26 14:33:10 · 2452 阅读 · 0 评论 -
【等价变换】—— 指数对数函数
e=10log10e=101/ln10e=10log10e=101/ln10e=10^{\log_{10} e}=10^{1/\ln 10}因此有:ex=10x/ln10ex=10x/ln10e^x=10^{x/\ln 10}原创 2018-08-12 11:59:34 · 3704 阅读 · 0 评论 -
【证明】—— 矩阵秩的相关证明
1. 列满秩矩阵If A is full column rank, then ATA is always invertible如果 Am×nAm×nA_{m\times n} 为列满秩,则 ATAATAA^TA 为可逆矩阵。证:可逆矩阵要求 ATAx=0ATAx=0A^TAx=0 时 x=0x=0x=0:0=xTATAx=(Ax)TAx=∥Ax∥2=>Ax=00=xTATAx...原创 2018-08-06 22:26:43 · 8056 阅读 · 0 评论 -
【证明】—— 二叉树的相关证明
1. 数学归纳法Proof that a binary tree with n leaves has a height of at least log n高度为 nnn 的二叉树,叶子结点不多于 2n2n2^n。数学归纳法,证明三部曲:n=0n=0n=0,只有一个根节点,则叶子结点也为此根节点,为 1,不多于 20202^0令高度为 kkk,叶子结点不多于 2k2k2^k,我们...原创 2018-08-01 23:49:27 · 2567 阅读 · 0 评论 -
【等价转换】—— min/max 的转换与互相转换
0. min 与 max 的转换{max(X,Y)=X+Y−min(X,Y)min(X,Y)=X+Y−max(X,Y){max(X,Y)=X+Y−min(X,Y)min(X,Y)=X+Y−max(X,Y)\left\{\begin{split}&\max \left(X, Y\right)=X+Y-\min\left(X,Y\right)\\&\min\left(X,Y\right)=...原创 2018-07-28 08:33:20 · 4975 阅读 · 0 评论 -
【证明】【一题多解】布尔不等式(union bound)的证明
布尔不等式(Boole’s inequality)也叫(union bound),即并集的上界,描述的是至少一个事件发生的概率(P(⋃iAi)P(⋃iAi)\mathbb{P}\left(\bigcup_i A_i\right))不大于单独事件(事件之间未必独立)发生的概率之和(∑iP(Ai)∑iP(Ai)\sum_i\mathbb P(A_i))。即:P(⋃iAi)≤∑iP(Ai)P(⋃...原创 2018-07-30 23:11:59 · 17188 阅读 · 1 评论 -
奇妙的证明 —— 0! = 1(a^0=1)
1. 0!=1(n−1)!=n!n(n−1)!=n!n\left(n-1\right)!=\frac{n!}{n}则:0!=1!1=10!=1!1=10!=\frac{1!}{1}=12. a^0=1an−1=anaan−1=anaa^{n-1}=\frac{a^n}{a}则:a0=a1a=1a0=a1a=1a^0 =\frac{a^1}{a}=1...原创 2018-07-05 23:04:55 · 2778 阅读 · 0 评论 -
放缩法 —— 渐进记号的相关证明
max(f(n), g(n)) = Θ\Theta(f(n)+g(n))原创 2016-05-26 11:42:08 · 2057 阅读 · 0 评论 -
证明的思路 —— 数形结合
数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休。—— 华罗庚0. 平方和公式 1. 奇数之和是平方数 2. 单位圆 ⇒ 三角不等式原创 2016-10-07 14:55:33 · 1333 阅读 · 0 评论 -
open ball、closed ball 与 open set、closed set(interior point,limit point)、dense set
在拓扑学上,open set(开集)是对实数轴(real line)上开区间(open interval)的拓展。 红色圆盘,蓝色圆圈红色点集即为一种 open set,蓝色点集则为 boundary set,红色点集和蓝色点集的并构成原创 2017-04-25 11:02:37 · 11064 阅读 · 0 评论 -
数据结构的时间复杂度与空间复杂度、及相关证明
有向图无向图的时空复杂度原创 2016-10-17 18:21:49 · 2057 阅读 · 0 评论 -
等价变换(equivalent transformation)
1. 加加减减原创 2017-04-24 22:20:20 · 2096 阅读 · 0 评论 -
不等式证明
基本常见不等式的证明;原创 2016-09-10 19:34:50 · 1350 阅读 · 0 评论 -
证明的手段 —— 不失一般性的(WLOG)
不失一般性是数学中一个常见的表达。不失一般性(Without loss of generality,缩写:WLOG、WOLOG 或 w.l.o.g.)是数学中一个常见的表达。所谓不失一般性的,即是给一些没有明确关系的变量(数值或者函数之间)确立一种明确的关系,而这种明确关系的确定不会增加问题的特殊性,也即是说这些变量之间本身即存在着一些关系,只是没有言明。原创 2016-09-16 10:29:06 · 19022 阅读 · 1 评论 -
三角函数相关证明
三角形内角与边长及外接圆半径之间的关系;原创 2016-09-10 20:46:25 · 1499 阅读 · 0 评论 -
分数的相关证明
分子+分母除以分母原创 2016-05-11 14:30:27 · 841 阅读 · 0 评论 -
圆上的定理 —— 圆周角定理与相交弦定理
相交弦定理的证明需要用到圆周角定理。原创 2016-09-16 11:42:03 · 6751 阅读 · 0 评论 -
排序不等式、证明及其应用
排序不等式可用于证明相当多不等式的证明;原创 2016-09-10 22:18:17 · 5950 阅读 · 0 评论 -
数列求和总结
特殊数列的求和1. ∑nj=1j⋅2j\sum_{j=1}^nj\cdot 2^j错位相减:Sn=2Sn=1⋅21+2⋅22+…+1⋅21+…+n⋅2n(n−1)⋅2n+n⋅2n+1\begin{split}&S_n=&1\cdot 2^1+&2\cdot 2^2+\ldots + &n\cdot 2^n&\;\\&2S_n=&\;&1\cdot2^1+\ldots+&(n-1)\cdot2^原创 2016-08-28 21:59:01 · 1465 阅读 · 0 评论 -
特殊数列的求和
1. 1+3+⋯+(2⋅n−1)1+3+\cdots+\left(2\cdot n-1\right)1+3+⋯+(2⋅n−1)=n(2n−1+1)2=n21+3+\cdots+\left(2\cdot n-1\right)=\frac{n(2n-1+1)}2=n^22. 12+22+⋯+n21^2+2^2+\cdots+n^21+22+32+⋯+n2=n(n+1)(2n+1)61+2^2+3^2+\原创 2016-08-28 19:55:47 · 2411 阅读 · 0 评论 -
含绝对值不等式的证明
|∑i=1nai|≥|ak|−|∑i≠knai||\sum\limits_{i=1}^na_i|\geq |a_k|-|\sum\limits_{i\neq k}^na_i|首先来看三项情况,也即需要证明:|a1+a2+a3|≥|a1|−|a2+a3||a_1+a_2+a_3|\geq |a_1|-|a_2+a_3|, 再来看两项的情况,也证明:|a1+a2|≥|a1|−|a2||a_1+a_2|原创 2016-11-10 19:33:29 · 2544 阅读 · 0 评论 -
auxiliary variable(辅助变量)的引入
辅助变量的引入是推导数学公式的一个重要手段。1. 条件概率原创 2016-10-21 12:26:00 · 4691 阅读 · 0 评论 -
斐波那契数列平方求和的计算公式及其几何证明
一个数的平方在几何上天然对应着正方形的面积。原创 2016-07-06 16:54:51 · 16822 阅读 · 0 评论 -
Gibbs 采样定理的若干证明
坐标平面上的三点,A(x1,y1),B(x1,y2),C(x2,y1)A(x_1,y_1),B(x_1,y_2),C(x_2, y_1),假设有概率分布 p(x,y)p(x,y)(P(X=x,Y=y)P(X=x,Y=y) 联合概率),则根据联合概率与条件概率的关系,则有如下两个等式:原创 2017-04-03 14:46:49 · 1943 阅读 · 0 评论 -
勾股定理 —— 证明大全
a2+b2=c2a^2+b^2=c^22002 年北京召开的世界数学大会,会徽如下: c2=4⋅12ab+(b−a)2⇒c2=a2+b2c^2=4\cdot \frac12ab+(b-a)^2 ⇒ c^2=a^2+b^21. 不同分割方法 构造两个边长为 a+ba+b 的正方形,则采用不同的分割方法,便会有,左边白色区域的面积等于右边白色区域的面积:c2=a2+b2c^2=a^原创 2017-04-11 11:14:56 · 3197 阅读 · 0 评论 -
证明的思路
1. 相等数学分析,关于相等的定义;子集相等的证明思路:两子集互相包含;原创 2017-01-04 16:09:35 · 930 阅读 · 0 评论 -
构造性证明
1. 周期sinx√\sin\sqrt x 不是周期函数周期函数的任何点都是周期性出现的。 对于 sinx√\sin \sqrt x 来说,0 是一个特殊的位置,sinx√\sin \sqrt x 为 0 时,x√=kπ⇒x=k2π2\sqrt x=k\pi ⇒ x=k^2\pi^2,显然 k2π2k^2\pi^2 不是周期性出现的;2. 质数无穷性质数无穷多个的证明(构造性证明)今反设只有 nn原创 2016-07-22 16:17:54 · 2685 阅读 · 0 评论 -
概率相关的证明
1. A⊂B ⇒ P(A)≤P(B)原创 2016-12-15 12:24:15 · 2224 阅读 · 0 评论 -
矩阵分析相关证明(一) —— 正交与投影
αu原创 2016-12-09 11:40:59 · 2448 阅读 · 0 评论 -
微积分基本概念相关证明 —— 导数与极限(洛必达法则)
(uv)′=u′v+uv′(uv)'=u'v+uv'导数定义:(uv)′原创 2016-11-22 00:56:13 · 4388 阅读 · 0 评论